Skip to main content

Pharmacotherapy of Age-Related Macular Degeneration

  • Reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Age-related macular degeneration (AMD) remains a leading cause of blindness worldwide. Two major clinical forms are recognized: non-exudative, which accounts for up to 90% of the cases of AMD, and exudative, characterized by the development of neovascularization.

The last two decades were remarkable for the development and widespread application of antiangiogenic agents for the treatment of exudative AMD. In this chapter, we summarize the important studies and trials that formed the basis for this therapeutic breakthrough. Additionally, we discuss data on antiangiogenic agents currently available, including long-term outcomes, limitations, and results of the different regimens and treatment strategies that have been studied. We also provide an in-depth discussion on the current need for pharmacological treatments for non-exudative AMD to halt progression of the early and intermediate forms of the disease to its late blinding forms. We identify current limitations in knowledge and provide an overview on ongoing areas of research and potential avenues for successful strategies.

This chapter is a resource for clinicians and investigators who treat individuals with AMD and who are engaged in improving the therapeutic options for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J, Parris EE, Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6. https://doi.org/10.1056/NEJM197111182852108.

    Article  CAS  PubMed  Google Scholar 

  2. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.

    Article  CAS  Google Scholar 

  3. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161:851–8.

    Article  CAS  Google Scholar 

  4. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–9.

    Article  CAS  Google Scholar 

  5. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246:1309–12.

    Article  CAS  Google Scholar 

  6. Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76. https://doi.org/10.1038/nm0603-669.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond). 2005;109:227–41. https://doi.org/10.1042/CS20040370.

    Article  CAS  Google Scholar 

  8. Keyt BA, Berleau LT, Nguyen HV, et al. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem. 1996;271:7788–95.

    Article  CAS  Google Scholar 

  9. Houck KA, Ferrara N, Winer J, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991;5:1806–14. https://doi.org/10.1210/mend-5-12-1806.

    Article  CAS  PubMed  Google Scholar 

  10. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5. https://doi.org/10.1038/359843a0.

    Article  CAS  PubMed  Google Scholar 

  11. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359:845–8. https://doi.org/10.1038/359845a0.

    Article  CAS  PubMed  Google Scholar 

  12. Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A. 1995;92:10457–61. https://doi.org/10.1073/pnas.92.23.10457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adamis AP, Shima DT, Tolentino MJ, et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol (Chicago, Ill 1960). 1996;114:66–71.

    Article  CAS  Google Scholar 

  14. Tolentino MJ, Miller JW, Gragoudas ES, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996;103:1820–8.

    Article  CAS  Google Scholar 

  15. Tolentino MJ, Miller JW, Gragoudas ES, et al. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch Ophthalmol (Chicago, Ill 1960). 1996;114:964–70.

    Article  CAS  Google Scholar 

  16. Pierce EA, Avery RL, Foley ED, et al. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A. 1995;92:905–9. https://doi.org/10.1073/pnas.92.3.905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller JW, Adamis AP, Shima DT, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol. 1994;145:574–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–7. https://doi.org/10.1056/NEJM199412013312203.

    Article  CAS  PubMed  Google Scholar 

  19. Adamis AP, Miller JW, Bernal MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 1994;118:445–50.

    Article  CAS  Google Scholar 

  20. Lebherz C, Maguire AM, Auricchio A, et al. Nonhuman primate models for diabetic ocular neovascularization using AAV2-mediated overexpression of vascular endothelial growth factor. Diabetes. 2005;54:1141–9. https://doi.org/10.2337/diabetes.54.4.1141.

    Article  CAS  PubMed  Google Scholar 

  21. Baffi J, Byrnes G, Chan CC, Csaky KG. Choroidal neovascularization in the rat induced by adenovirus mediated expression of vascular endothelial growth factor. Invest Ophthalmol Vis Sci. 2000;41:3582–9.

    CAS  PubMed  Google Scholar 

  22. Cui JZ, Kimura H, Spee C, et al. Natural history of choroidal neovascularization induced by vascular endothelial growth factor in the primate. Graefes Arch Clin Exp Ophthalmol. 2000;238:326–33.

    Article  CAS  Google Scholar 

  23. Husain D, Kim I, Gauthier D, et al. Safety and efficacy of Intravitreal injection of Ranibizumab in combination with Verteporfin PDT on experimental choroidal neovascularization in the monkey. Arch Ophthalmol. 2005;123:509. https://doi.org/10.1001/archopht.123.4.509.

    Article  PubMed  Google Scholar 

  24. Yi X, Ogata N, Komada M, et al. Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol. 1997;235:313–9.

    Article  CAS  Google Scholar 

  25. Krzystolik MG, Afshari MA, Adamis AP, et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol (Chicago, Ill 1960). 2002;120:338–46.

    Article  CAS  Google Scholar 

  26. Kwak N, Okamoto N, Wood JM, Campochiaro PA. VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2000;41:3158–64.

    CAS  PubMed  Google Scholar 

  27. Lopez PF, Sippy BD, Lambert HM, et al. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1996;37:855–68.

    CAS  PubMed  Google Scholar 

  28. Frank RN, Amin RH, Eliott D, et al. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol. 1996;122:393–403.

    Article  CAS  Google Scholar 

  29. Gragoudas ES, Adamis AP, Cunningham ET, et al. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351:2805–16. https://doi.org/10.1056/NEJMoa042760.

    Article  CAS  PubMed  Google Scholar 

  30. VEGF Inhibition Study in Ocular Neovascularization (V.I.S.I.O.N.) Clinical Trial Group, Chakravarthy U, Adamis AP, et al. Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology. 2006;113:1508.e1–1508.e25. https://doi.org/10.1016/j.ophtha.2006.02.064.

    Article  Google Scholar 

  31. Lowe J, Araujo J, Yang J, et al. Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Exp Eye Res. 2007;85:425–30. https://doi.org/10.1016/j.exer.2007.05.008.

    Article  CAS  PubMed  Google Scholar 

  32. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31. https://doi.org/10.1056/NEJMoa054481.

    Article  CAS  PubMed  Google Scholar 

  33. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1432–44. https://doi.org/10.1056/NEJMoa062655.

    Article  CAS  PubMed  Google Scholar 

  34. Mordenti J, Cuthbertson RA, Ferrara N, et al. Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol. 1999;27:536–44. https://doi.org/10.1177/019262339902700507.

    Article  CAS  PubMed  Google Scholar 

  35. Michels S, Rosenfeld PJ, Puliafito CA, et al. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration twelve-week results of an uncontrolled open-label clinical study. Ophthalmology. 2005;112:1035–47. https://doi.org/10.1016/j.ophtha.2005.02.007.

    Article  PubMed  Google Scholar 

  36. Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005;36:331–5.

    Google Scholar 

  37. Rosenfeld PJ, Windsor MA, Feuer WJ, et al. Estimating Medicare and patient savings from the use of Bevacizumab for the treatment of exudative age-related macular degeneration. Am J Ophthalmol. 2018;191:135–9. https://doi.org/10.1016/j.ajo.2018.04.008.

    Article  PubMed  Google Scholar 

  38. CATT Research Group, Martin DF, Maguire MG, et al. Ranibizumab and Bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364:1897–908. https://doi.org/10.1056/NEJMoa1102673.

    Article  Google Scholar 

  39. Chakravarthy U, Harding SP, Rogers CA, et al. Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial. Lancet (London, England). 2013;382:1258–67. https://doi.org/10.1016/S0140-6736(13)61501-9.

    Article  CAS  Google Scholar 

  40. Holz FG, Amoaku W, Donate J, et al. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology. 2011;118:663–71. https://doi.org/10.1016/j.ophtha.2010.12.019.

    Article  PubMed  Google Scholar 

  41. Aflibercept: AVE 0005, AVE 005, AVE0005, VEGF trap – regeneron, VEGF trap (R1R2), VEGF trap-eye. Drugs R D. 2008;9:261–9.

    Google Scholar 

  42. Stewart MW, Rosenfeld PJ. Predicted biological activity of intravitreal VEGF trap. Br J Ophthalmol. 2008;92:667–8. https://doi.org/10.1136/bjo.2007.134874.

    Article  CAS  PubMed  Google Scholar 

  43. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119:2537–48. https://doi.org/10.1016/j.ophtha.2012.09.006.

    Article  PubMed  Google Scholar 

  44. Lotery A, Griner R, Ferreira A, et al. Real-world visual acuity outcomes between ranibizumab and aflibercept in treatment of neovascular AMD in a large US data set. Eye (Lond). 2017;31:1697–706. https://doi.org/10.1038/eye.2017.143.

    Article  CAS  Google Scholar 

  45. Gillies MC, Nguyen V, Daien V, et al. Twelve-month outcomes of ranibizumab vs. aflibercept for neovascular age-related macular degeneration: data from an observational study. Ophthalmology. 2016;123:2545–53. https://doi.org/10.1016/j.ophtha.2016.08.016.

    Article  PubMed  Google Scholar 

  46. Mehta H, Tufail A, Daien V, et al. Real-world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal vascular endothelial growth factor inhibitors. Prog Retin Eye Res. 2018;65:127–46. https://doi.org/10.1016/j.preteyeres.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  47. Lalwani GA, Rosenfeld PJ, Fung AE, et al. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO study. Am J Ophthalmol. 2009;148:43–58.e1. https://doi.org/10.1016/j.ajo.2009.01.024.

    Article  CAS  PubMed  Google Scholar 

  48. Oh DJ, Chen JL, Vajaranant TS, Dikopf MS. Brimonidine tartrate for the treatment of glaucoma. Expert Opin Pharmacother. 2019;20:115–22. https://doi.org/10.1080/14656566.2018.1544241.

    Article  CAS  PubMed  Google Scholar 

  49. Martin DF, Maguire MG, Fine SL, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration. Ophthalmology. 2012;119:1388–98. https://doi.org/10.1016/j.ophtha.2012.03.053.

    Article  PubMed  Google Scholar 

  50. Engelbert M, Zweifel SA, Freund KB. “Treat and extend” dosing of intravitreal antivascular endothelial growth factor therapy for type 3 neovascularization/retinal angiomatous proliferation. Retina. 2009;29:1424–31. https://doi.org/10.1097/IAE.0b013e3181bfbd46.

    Article  PubMed  Google Scholar 

  51. Berg K, Hadzalic E, Gjertsen I, et al. Ranibizumab or bevacizumab for neovascular age-related macular degeneration according to the Lucentis compared to Avastin study treat-and-extend protocol. Ophthalmology. 2016;123:51–9. https://doi.org/10.1016/j.ophtha.2015.09.018.

    Article  PubMed  Google Scholar 

  52. Berg K, Pedersen TR, Sandvik L, Bragadóttir R. Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. Ophthalmology. 2015;122:146–52. https://doi.org/10.1016/j.ophtha.2014.07.041.

    Article  PubMed  Google Scholar 

  53. Silva R, Berta A, Larsen M, et al. Treat-and-extend versus monthly regimen in neovascular age-related macular degeneration: results with ranibizumab from the TREND study. Ophthalmology. 2018;125:57–65. https://doi.org/10.1016/j.ophtha.2017.07.014.

    Article  PubMed  Google Scholar 

  54. Daien V, Nguyen V, Essex RW, et al. Incidence and outcomes of infectious and noninfectious endophthalmitis after intravitreal injections for age-related macular degeneration. Ophthalmology. 2018;125:66–74. https://doi.org/10.1016/j.ophtha.2017.07.005.

    Article  PubMed  Google Scholar 

  55. Kim LN, Mehta H, Barthelmes D, et al. Metaanalysis of real-world outcomes of intravitreal ranibizumab for the treatment of neovascular age-related macular degeneration. Retina. 2016;36:1418–31. https://doi.org/10.1097/IAE.0000000000001142.

    Article  CAS  PubMed  Google Scholar 

  56. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96:1788–95. https://doi.org/10.1038/sj.bjc.6603813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gregori NZ, Flynn HW, Schwartz SG, et al. Current infectious endophthalmitis rates after intravitreal injections of anti-vascular endothelial growth factor agents and outcomes of treatment. Ophthalmic Surg Lasers Imaging Retina. 2015;46:643–8. https://doi.org/10.3928/23258160-20150610-08.

    Article  PubMed  Google Scholar 

  58. McCannel CA. Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: causative organisms and possible prevention strategies. Retina. 2011;31:654–61. https://doi.org/10.1097/IAE.0b013e31820a67e4.

    Article  CAS  PubMed  Google Scholar 

  59. Rayess N, Rahimy E, Storey P, et al. Postinjection endophthalmitis rates and characteristics following intravitreal bevacizumab, ranibizumab, and aflibercept. Am J Ophthalmol. 2016;165:88–93. https://doi.org/10.1016/j.ajo.2016.02.028.

    Article  CAS  PubMed  Google Scholar 

  60. Kaiser PK, Blodi BA, Shapiro H, et al. Angiographic and optical coherence tomographic results of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology. 2007;114:1868–75. https://doi.org/10.1016/j.ophtha.2007.04.030.

    Article  PubMed  Google Scholar 

  61. Thavikulwat AT, Jacobs-El N, Kim JS, et al. Evolution of geographic atrophy in participants treated with ranibizumab for Neovascular age-related macular degeneration. Ophthalmol Retin. 2017;1:34–41. https://doi.org/10.1016/j.oret.2016.09.005.

    Article  Google Scholar 

  62. Good TJ, Kimura AE, Mandava N, Kahook MY. Sustained elevation of intraocular pressure after intravitreal injections of anti-VEGF agents. Br J Ophthalmol. 2011;95:1111–4. https://doi.org/10.1136/bjo.2010.180729.

    Article  PubMed  Google Scholar 

  63. Hoang QV, Tsuang AJ, Gelman R, et al. Clinical predictors of sustained intraocular pressure elevation due to intravitreal anti-vascular endothelial growth factor therapy. Retina. 2013;33:179–87. https://doi.org/10.1097/IAE.0b013e318261a6f7.

    Article  CAS  PubMed  Google Scholar 

  64. Rofagha S, Bhisitkul RB, Boyer DS, et al. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013;120:2292–9. https://doi.org/10.1016/j.ophtha.2013.03.046.

    Article  PubMed  Google Scholar 

  65. Maguire MG, Martin DF, Ying G, et al. Five-year outcomes with anti–vascular endothelial growth factor treatment of neovascular age-related macular degeneration. Ophthalmology. 2016;123:1751–61. https://doi.org/10.1016/j.ophtha.2016.03.045.

    Article  PubMed  Google Scholar 

  66. Gillies MC, Campain A, Barthelmes D, et al. Long-term outcomes of treatment of neovascular age-related macular degeneration. Ophthalmology. 2015;122:1837–45. https://doi.org/10.1016/j.ophtha.2015.05.010.

    Article  PubMed  Google Scholar 

  67. Forooghian F, Cukras C, Meyerle CB, et al. Tachyphylaxis after intravitreal bevacizumab for exudative age-related macular degeneration. Retina. 2009;29:723–31. https://doi.org/10.1097/IAE.0b013e3181a2c1c3.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gasperini JL, Fawzi AA, Khondkaryan A, et al. Bevacizumab and ranibizumab tachyphylaxis in the treatment of choroidal neovascularisation. Br J Ophthalmol. 2012;96:14–20. https://doi.org/10.1136/bjo.2011.204685.

    Article  PubMed  Google Scholar 

  69. Messenger WB, Campbell JP, Faridi A, et al. Injection frequency and anatomic outcomes 1 year following conversion to aflibercept in patients with neovascular age-related macular degeneration. Br J Ophthalmol. 2014;98:1205–7. https://doi.org/10.1136/bjophthalmol-2013-304829.

    Article  PubMed  Google Scholar 

  70. Ferrone PJ, Anwar F, Naysan J, et al. Early initial clinical experience with intravitreal aflibercept for wet age-related macular degeneration. Br J Ophthalmol. 2014;98(Suppl 1):i17–21. https://doi.org/10.1136/bjophthalmol-2013-304474.

    Article  PubMed  Google Scholar 

  71. Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, et al. Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration. Ophthalmol Retin. 2018;2:24–30. https://doi.org/10.1016/j.oret.2017.03.015.

    Article  Google Scholar 

  72. Rauch R, Weingessel B, Maca SM, Vecsei-Marlovits PV. Time to first treatment. Retina. 2012;32:1260–4. https://doi.org/10.1097/IAE.0b013e3182018df6.

    Article  PubMed  Google Scholar 

  73. Ying G, Kim BJ, Maguire MG, et al. Sustained visual acuity loss in the comparison of age-related macular degeneration treatments trials. JAMA Ophthalmol. 2014;132:915–21. https://doi.org/10.1001/jamaophthalmol.2014.1019.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schmidt-Erfurth U, Waldstein SM. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res. 2016;50:1–24. https://doi.org/10.1016/j.preteyeres.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  75. Bressler NM, Chang TS, Suñer IJ, et al. Vision-related function after ranibizumab treatment by better- or worse-seeing eye. Ophthalmology. 2010;117:747–756.e4. https://doi.org/10.1016/j.ophtha.2009.09.002.

    Article  PubMed  Google Scholar 

  76. Bressler NM, Chang TS, Varma R, et al. Driving ability reported by neovascular age-related macular degeneration patients after treatment with ranibizumab. Ophthalmology. 2013;120:160–8. https://doi.org/10.1016/j.ophtha.2012.07.027.

    Article  PubMed  Google Scholar 

  77. Bakri SJ, Thorne JE, Ho AC, et al. Safety and efficacy of anti-vascular endothelial growth factor therapies for Neovascular age-related macular degeneration: a report by the American Academy of Ophthalmology. Ophthalmology. 2019;126:55–63. https://doi.org/10.1016/j.ophtha.2018.07.028.

    Article  PubMed  Google Scholar 

  78. van Asten F, Michels CTJ, Hoyng CB, et al. The cost-effectiveness of bevacizumab, ranibizumab and aflibercept for the treatment of age-related macular degeneration – a cost-effectiveness analysis from a societal perspective. PLoS One. 2018;13:e0197670. https://doi.org/10.1371/journal.pone.0197670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bressler NM, Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol (Chicago, Ill 1960). 2001;119:198–207.

    CAS  Google Scholar 

  80. Bressler NM, Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol (Chicago, Ill 1960). 2001;119:198–207.

    CAS  Google Scholar 

  81. Verteporfin In Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization--verteporfin in photodynamic therapy report 2. Am J Ophthalmol. 2001;131:541–60.

    Article  Google Scholar 

  82. Manyak MJ, Russo A, Smith PD, Glatstein E. Photodynamic therapy. J Clin Oncol. 1988;6:380–91. https://doi.org/10.1200/JCO.1988.6.2.380.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou CN. Mechanisms of tumor necrosis induced by photodynamic therapy. J Photochem Photobiol B. 1989;3:299–318.

    Article  CAS  Google Scholar 

  84. Miller JW, Walsh AW, Kramer M, et al. Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol (Chicago, Ill 1960). 1995;113:810–8.

    Article  CAS  Google Scholar 

  85. Schmidt-Erfurth U, Hasan T, Gragoudas E, et al. Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology. 1994;101:1953–61.

    Article  CAS  Google Scholar 

  86. Gao Y, Yu T, Zhang Y, Dang G. Anti-VEGF monotherapy versus photodynamic therapy and anti-VEGF combination treatment for neovascular age-related macular degeneration: a meta-analysis. Invest Ophthalmol Vis Sci. 2018;59:4307–17. https://doi.org/10.1167/iovs.17-23747.

    Article  CAS  PubMed  Google Scholar 

  87. Cheung CMG, Lai TYY, Ruamviboonsuk P, et al. Polypoidal choroidal vasculopathy. Ophthalmology. 2018;125:708–24. https://doi.org/10.1016/j.ophtha.2017.11.019.

    Article  PubMed  Google Scholar 

  88. Koh A, Lai TYY, Takahashi K, et al. Efficacy and safety of ranibizumab with or without verteporfin photodynamic therapy for polypoidal choroidal vasculopathy. JAMA Ophthalmol. 2017;135:1206. https://doi.org/10.1001/jamaophthalmol.2017.4030.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wong TY, Ogura Y, Lee WK, et al. Efficacy and safety of intravitreal aflibercept for polypoidal choroidal vasculopathy: 2-year results of the PLANET study. Am J Ophthalmol. 2019; https://doi.org/10.1016/j.ajo.2019.02.027.

  90. Chaudhary V, Barbosa J, Lam W-C, et al. Ozurdex in age-related macular degeneration as adjunct to ranibizumab (the OARA study). Can J Ophthalmol. 2016;51:302–5. https://doi.org/10.1016/j.jcjo.2016.04.020.

    Article  PubMed  Google Scholar 

  91. Giancipoli E, Pinna A, Boscia F, et al. Intravitreal dexamethasone in patients with wet age-related macular degeneration resistant to anti-VEGF: a prospective pilot study. J Ophthalmol. 2018;2018:1–8. https://doi.org/10.1155/2018/5612342.

    Article  CAS  Google Scholar 

  92. Rezar-Dreindl S, Sacu S, Eibenberger K, et al. The intraocular cytokine profile and therapeutic response in persistent neovascular age-related macular degeneration. Investig Opthalmology Vis Sci. 2016;57:4144. https://doi.org/10.1167/iovs.16-19772.

    Article  Google Scholar 

  93. Jaffe GJ, Ciulla TA, Ciardella AP, et al. Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration. Ophthalmology. 2017;124:224–34. https://doi.org/10.1016/j.ophtha.2016.10.010.

    Article  PubMed  Google Scholar 

  94. Wolf A, Langmann T. Anti-VEGF-A/ANG2 combotherapy limits pathological angiogenesis in the eye: a replication study. EMBO Mol Med. 2019;11 https://doi.org/10.15252/emmm.201910362.

  95. Jackson TL, Chakravarthy U, Slakter JS, et al. Stereotactic radiotherapy for neovascular age-related macular degeneration. Ophthalmology. 2015;122:138–45. https://doi.org/10.1016/j.ophtha.2014.07.043.

    Article  PubMed  Google Scholar 

  96. Freiberg FJ, Michels S, Muldrew A, et al. Microvascular abnormalities secondary to radiation therapy in neovascular age-related macular degeneration: findings from the INTREPID clinical trial. Br J Ophthalmol. 2019;103:469–74. https://doi.org/10.1136/bjophthalmol-2018-311865.

    Article  PubMed  Google Scholar 

  97. Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the age-related eye disease study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309:2005–15.

    Google Scholar 

  98. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119:1417–36.

    Google Scholar 

  99. Vavvas DG, Small KW, Awh CC, et al. CFH and ARMS2 genetic risk determines progression to neovascular age-related macular degeneration after antioxidant and zinc supplementation. Proc Natl Acad Sci U S A. 2018;115:E696–704. https://doi.org/10.1073/pnas.1718059115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Assel MJ, Li F, Wang Y, et al. Genetic polymorphisms of CFH and ARMS2 do not predict response to antioxidants and zinc in patients with age-related macular degeneration. Ophthalmology. 2018;125:391–7. https://doi.org/10.1016/j.ophtha.2017.09.008.

    Article  PubMed  Google Scholar 

  101. Chew EY, Klein ML, Clemons TE, et al. Genetic testing in persons with age-related macular degeneration and the use of the AREDS supplements: to test or not to test? Ophthalmology. 2015;122:212–5. https://doi.org/10.1016/j.ophtha.2014.10.012.

    Article  PubMed  Google Scholar 

  102. Pearlman J. Re: Chew et al.: genetic testing in persons with age-related macular degeneration and the use of the AREDS supplements: to test or not to test? Ophthalmology. 2015;122:212–5. Ophthalmology 122:e60-1. https://doi.org/10.1016/j.ophtha.2015.01.031.

    Article  Google Scholar 

  103. Awh CC, Zanke B. Re: Chew et al.: genetic testing in persons with age-related macular degeneration and the use of AREDS supplements: to test or not to test? Ophthalmology. 2015;122:212–5. Ophthalmology 122:e62-3. https://doi.org/10.1016/j.ophtha.2015.03.028.

    Article  Google Scholar 

  104. Chew EY, Klein ML, Clemons TE, et al. No clinically significant association between CFH and ARMS2 genotypes and response to nutritional supplements: AREDS report number 38. Ophthalmology. 2014;121:2173–80. https://doi.org/10.1016/j.ophtha.2014.05.008.

    Article  PubMed  Google Scholar 

  105. Klein ML, Francis PJ, Rosner B, et al. CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology. 2008;115:1019–25. https://doi.org/10.1016/j.ophtha.2008.01.036.

    Article  PubMed  Google Scholar 

  106. Awh CC, Lane A-M, Hawken S, et al. CFH and ARMS2 genetic polymorphisms predict response to antioxidants and zinc in patients with age-related macular degeneration. Ophthalmology. 2013;120:2317–23. https://doi.org/10.1016/j.ophtha.2013.07.039.

    Article  PubMed  Google Scholar 

  107. Fritsche LG, Fariss RN, Stambolian D, et al. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet. 2014;15:151–71.

    Article  CAS  Google Scholar 

  108. Fritsche LG, Igl W, Bailey JNC, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48:134–43. https://doi.org/10.1038/ng.3448.

    Article  CAS  PubMed  Google Scholar 

  109. Holz FG, Sadda SR, Busbee B, et al. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: chroma and spectri phase 3 randomized clinical trials. JAMA Ophthalmol. 2018;136:666–77. https://doi.org/10.1001/jamaophthalmol.2018.1544.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sacconi R, Corbelli E, Querques L, et al. A review of current and future management of geographic atrophy. Ophthalmol Ther. 2017;6:69–77. https://doi.org/10.1007/s40123-017-0086-6.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liu K, Song Y, Xu G, et al. Conbercept for treatment of neovascular age-related macular degeneration: results of the randomized phase 3 PHOENIX study. Am J Ophthalmol. 2019;197:156–67. https://doi.org/10.1016/j.ajo.2018.08.026.

    Article  CAS  PubMed  Google Scholar 

  112. Dugel PU, Jaffe GJ, Sallstig P, et al. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology. 2017;124:1296–304. https://doi.org/10.1016/j.ophtha.2017.03.057.

    Article  PubMed  Google Scholar 

  113. Rodrigues GA, Mason M, Christie L-A, et al. Functional characterization of abicipar-pegol, an anti-VEGF DARPin therapeutic that potently inhibits angiogenesis and vascular permeability. Investig Opthalmology Vis Sci. 2018;59:5836. https://doi.org/10.1167/iovs.18-25307.

    Article  CAS  Google Scholar 

  114. Campochiaro PA, Nguyen QD, Shah SM, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther. 2006;17:167–76. https://doi.org/10.1089/hum.2006.17.167.

    Article  CAS  PubMed  Google Scholar 

  115. Constable IJ, Pierce CM, Lai C-M, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine. 2016;14:168–75. https://doi.org/10.1016/j.ebiom.2016.11.016.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Campochiaro PA, Lauer AK, Sohn EH, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. https://doi.org/10.1089/hum.2016.117.

  117. da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36:328–37. https://doi.org/10.1038/nbt.4114.

    Article  CAS  PubMed  Google Scholar 

  118. Wykoff CC, Hariprasad SM, Zhou B. Innovation in neovascular age-related macular degeneration: consideration of brolucizumab, abicipar, and the port delivery system. Ophthalmic Surgery, Lasers Imaging Retin. 2018;49:913–7. https://doi.org/10.3928/23258160-20181203-01.

    Article  Google Scholar 

  119. Wang K, Han Z. Injectable hydrogels for ophthalmic applications. J Control Release. 2017;268:212–24. https://doi.org/10.1016/j.jconrel.2017.10.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jiang S, Franco YL, Zhou Y, Chen J. Nanotechnology in retinal drug delivery. Int J Ophthalmol. 2018;11:1038–44. https://doi.org/10.18240/ijo.2018.06.23.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Elsaid N, Jackson TL, Elsaid Z, et al. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm. 2016;13:2923–40. https://doi.org/10.1021/acs.molpharmaceut.6b00335.

    Article  CAS  PubMed  Google Scholar 

  122. Kelly S, Hirani A, Shahidadpury V, et al. Aflibercept nanoformulation inhibits VEGF expression in ocular in vitro model: a preliminary report. Biomedicine. 2018;6:92. https://doi.org/10.3390/biomedicines6030092.

    Article  CAS  Google Scholar 

  123. Wong CW, Wong TT. Posterior segment drug delivery for the treatment of exudative age-related macular degeneration and diabetic macular oedema. Br J Ophthalmol. 2019:1–5. https://doi.org/10.1136/bjophthalmol-2018-313462.

  124. Wang Y, Liu C-H, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat Commun. 2019;10:804. https://doi.org/10.1038/s41467-019-08690-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Miller JW, Bagheri S, Vavvas DG. Advances in age-related macular degeneration understanding and therapy. US Ophthalmic Rev. 2017;10:119. https://doi.org/10.17925/USOR.2017.10.02.119.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zarbin M, Sugino I, Townes-Anderson E. Concise review: update on retinal pigment epithelium transplantation for age-related macular degeneration. Stem Cells Transl Med. 2019;8:466–77. https://doi.org/10.1002/sctm.18-0282.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zarbin M. Cell-based therapy for retinal disease: the new frontier. Methods in Molecular Biology (Clifton, NJ). 2019;1834:367–81.

    Article  CAS  Google Scholar 

  128. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16. https://doi.org/10.1016/S0140-6736(14)61376-3.

    Article  PubMed  Google Scholar 

  129. Singh MS, MacLaren RE. Stem cell treatment for age-related macular degeneration: the challenges. Investig Opthalmology Vis Sci. 2018;59:AMD78. https://doi.org/10.1167/iovs.18-24426.

    Article  Google Scholar 

  130. Oswald J, Baranov P. Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol. 2018;10:251584141877443. https://doi.org/10.1177/2515841418774433.

    Article  Google Scholar 

  131. Abedin Zadeh M, Khoder M, Al-Kinani AA, et al. Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discov Today. 2019; https://doi.org/10.1016/j.drudis.2019.04.009.

  132. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY; MARWA Study Group. Ranibizunab for neomuscular age-related macular degeneration. N Engl J Med 2006; 355:1419–1430

    Google Scholar 

  133. Brown DM, Kaiser PK, Michels M, et al.; ANCHOR Study Group. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Eng J Med 2006;355:1432–1444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deeba Husain .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Laíns, I., Kim, I.K., Husain, D. (2022). Pharmacotherapy of Age-Related Macular Degeneration. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_112

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_112

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics