Skip to main content

Transitioning to Adaptive and Resilient Infrastructure in Latin America and the Caribbean

  • Reference work entry
  • First Online:
  • 1518 Accesses

Abstract

Despite spending US$140 billion on infrastructure projects in 2018, Latin America and the Caribbean (LAC) still lag behind other global regions in terms of investment in infrastructure. This is of grave concern, since infrastructure is often regarded as society’s backbone thanks to the essential social and development capabilities that it enables. If incorrectly implemented, infrastructure can likewise result in harmful and negative impacts, thus exacerbating conditions of inequality and poverty. In order for infrastructure to become an enabler of benefits and thus function as a link for development in LAC, it must overcome the series of challenges and disruptions that affect household well-being and enterprise productivity. However, several of the threats that infrastructure systems and their performance need to confront in LAC are both difficult to measure and highly uncertain. This is the case for traditional challenges such as urbanization processes, as well as new ones, such as climate change, pandemics, and other potential risk conditions that the region may have to face. As such, this entry presents a review of the various challenges, difficulties, and uncertainties that LAC infrastructure must face. At the same time, we discuss frameworks, tools, and experiences that could aid infrastructure systems in adequately responding to such challenges given their uncertain nature. It also provides a discussion on the various levels at which resilience should be implemented when designing, planning, and operating regional infrastructure systems. Ultimately, enabling resilient-based strategies for infrastructure investments across different levels of implementation would facilitate sustainable development in an uncertain and changing region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adshead, D., Thacker, S., Fuldauer, L. I., & Hall, J. W. (2019). Delivering on the Sustainable Development Goals through long-term infrastructure planning. Global Environmental Change, 59, 101975.

    Article  Google Scholar 

  • Allard, D., Ailliot, P., Monbet, V., & Naveau, P. (2015). Stochastic weather generators: An overview of weather type models. Journal de la Societe Française de Statistique, 156(1), 101–113.

    Google Scholar 

  • Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419(6903), 224–232.

    Article  Google Scholar 

  • ANHCR. (2020). Venezuela situation, 2. Available from: https://www.unhcr.org/venezuela-emergency.html. Accessed 30 July 2020.

  • Ben-Haim, Y. (2006). Implications of info-gap uncertainty. In Info-gap decision theory (pp. 317–346). https://doi.org/10.1016/b978-012373552-2/50014-x.

  • Boé, J., Terray, L., Habets, F., & Martin, E. (2007). Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. International Journal of Climatology, 27(12), 1643–1655.

    Article  Google Scholar 

  • Bonzanigo, L., Brown, C., Harou, J., Hurford, A., Karki, P., Newmann, J., & Ray, P. (2015). South Asia investment decision making in hydropower: Decision tree case study of the Upper Arun Hydropower Project and Koshi Basin Hydropower Development in Nepal, Report No. AUS, 11077.

    Google Scholar 

  • Brandon, K., Redford, K. H., & Sanderson, S. (1998). Parks in peril: People, politics, and protected areas. Washington, DC: Island Press.

    Google Scholar 

  • Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48(9)1–12.

    Google Scholar 

  • Buytaert, W., & De Bievre, B. (2012). Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resources Research, 48(8), 1–13. https://doi.org/10.1029/2011WR011755.

    Article  Google Scholar 

  • Buytaert, W., Vuille, M., Dewulf, A., Urrutia, R., Karmalkar, A., & Célleri, R. (2010). Uncertainties in climate change projections and regional downscaling in the tropical Andes: Implications for water resources management. Hydrology and Earth System Sciences, 14(7), 1247–1258. https://doi.org/10.5194/hess-14-1247-2010.

    Article  Google Scholar 

  • Cahueñas, H. (2018). Los acuerdos de Paz entre Ecuador y Perú, veinte años después. Plan V, 2.

    Google Scholar 

  • Campos, N., Engel, E, Fischer, R. D., & Galetovic, A. (2019). Renegotiations and corruption in infrastructure: The Odebrecht case. Available SSRN 3447631.

    Google Scholar 

  • Chen, J., & Brissette, F. P. (2014). Comparison of five stochastic weather generators in simulating daily precipitation and temperature for the Loess Plateau of China. International Journal of Climatology, 34(10), 3089–3105. https://doi.org/10.1002/joc.3896.

    Article  Google Scholar 

  • Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., & Nunn, P. D. (2013). Sea-level rise by 2100. Science (80-. ), 342(6165), 1445.

    Article  Google Scholar 

  • Clark, S. S., Seager, T. P., & Chester, M. V. (2018). A capabilities approach to the prioritization of critical infrastructure. Environment Systems and Decisions, 38(3), 339–352.

    Article  Google Scholar 

  • Collier, P., & Venables, A. J. (2016). Urban infrastructure for development. Oxford Review of Economic Policy, 32(3), 391–409.

    Article  Google Scholar 

  • Corporación Andina de Fomento (CAF). (2000). FENOMENO EL NIÑO 1997–1998 MEMORIA, RETOS Y SOLUCIONES. Working paper. Lima.

    Google Scholar 

  • Cortassa, C., Andres, G. D., & Wursten, A. (2013). El conflicto argentino-uruguayo por las papeleras: diez años de una controversia socio-tecno-ambiental latinoamericana.

    Google Scholar 

  • Crescenzi, R., Di Cataldo, M., & Rodríguez-Pose, A. (2016). Government quality and the economic returns of transport infrastructure investment in European regions. Journal of Regional Science, 56(4), 555–582.

    Article  Google Scholar 

  • da Silva, D. M., de Almeida, E. D., Silva, J. R., & Soares, F. H. M. (2019). Responsabilidade civil e ambiental nos casos de acidentes com barragens em mariana e brumadinho. In Congresso Interdisciplinar (Vol. 4). ISSN: 2595-7732.

    Google Scholar 

  • EFE. (2018). Infraestructura destruida por erupción del volcán de Fuego de Guatemala costará $30.7 millones. El Econ., 18th June, 2.

    Google Scholar 

  • Elkadi, A. S., Woning, M., Bles, T., Abraham, G., Casares, A., Sethi, K., & Flor, L. (2019). Climate-resilient roads in Paraguay; Mapping the risks and advising adaptive mitigation measures.

    Google Scholar 

  • Ensor, J., Forrester, J., & Matin, N. (2018). Bringing rights into resilience: Revealing complexities of climate risks and social conflict. Disasters, 42, S287–S305.

    Article  Google Scholar 

  • Fay, M., Alberto Andres, L., Fox, C., Narloch, U., Straub, S., & Slawson, M. (2017). Rethinking infrastructure in Latin America and the Caribbean: Spending better to achieve more. Washington, DC: The World Bank.

    Book  Google Scholar 

  • Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability, 1(1), 51–58.

    Article  Google Scholar 

  • Fuss, S., Szolgayova, J., Obersteiner, M., & Gusti, M. (2008). Investment under market and climate policy uncertainty. Applied Energy, 85(8), 708–721. https://doi.org/10.1016/j.apenergy.2008.01.005.

    Article  Google Scholar 

  • Ghile, Y. B., Taner, M. Ü., Brown, C., Grijsen, J. G., & Talbi, A. (2014). Bottom-up climate risk assessment of infrastructure investment in the Niger River Basin. Climatic Change, 122(1), 97–110. https://doi.org/10.1007/s10584-013-1008-9.

    Article  Google Scholar 

  • Grafton, R. Q., Doyen, L., Béné, C., Borgomeo, E., Brooks, K., Chu, L., Cumming, G. S., Dixon, J., Dovers, S., & Garrick, D. (2019). Realizing resilience for decision-making. Nature Sustainability, 2(10), 907–913.

    Article  Google Scholar 

  • Groves, D., Knopman, D., & Lempert, R. (2008). Identifying and reducing climate-change vulnerabilities in water-management plans. Santa Monica: RAND.

    Book  Google Scholar 

  • Hall, J. W., Borgomeo, E., Bruce, A., Di Mauro, M., & Mortazavi-Naeini, M. (2019). Resilience of water resource systems: Lessons from England. Water Security, 8, 100052. https://doi.org/10.1016/j.wasec.2019.100052.

    Article  Google Scholar 

  • Hallegatte, S., Shah, A., Lempert, R., Brown, C., & Gill, S. (2012). Investment decision making under deep uncertainty-application to climate change.Washington, DC: The World Bank.

    Google Scholar 

  • Hallegatte, S., Rentschler, J., & Rozenberg, J. (2019). Resilient infrastructure: A lifeline for sustainable development. Washington, DC: The World Bank.

    Google Scholar 

  • Hartmann, D. L., Tank, A. M. G. K., & Rusticucci, M. (2013). IPCC fifth assessment report, climatie change 2013: The physical science basis. IPCC, AR5, 31–39.

    Google Scholar 

  • Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20.

    Article  Google Scholar 

  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816–821. https://doi.org/10.1038/nclimate1911.

    Article  Google Scholar 

  • Hughes, M., Kelly, P. M., Pilcher, J. R., & Lamarche, V. C. (1982). Climate from tree rings. In Climate from tree rings. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • International Hydropower Association. (2019). Hydropower sector climate resilience guide. The International Hydropower Association Limited, London, UK.

    Google Scholar 

  • Jones, P. D., & Mann, M. E. (2004). Climate over past millennia. Reviews of Geophysics, 42(2), RG2002.

    Article  Google Scholar 

  • Jones, P. D., Osborn, T. J., & Briffa, K. R. (2001). The evolution of climate over the last millennium. Science (80-. ), 292(5517), 662–667.

    Article  Google Scholar 

  • Kalra, N., Groves, D. G., Bonzanigo, L., Perez, E. M., Ramos, C., Brandon, C., & Rodriguez Cabanillas, I. (2015). Robust decision-making in the water sector: A strategy for implementing Lima’s long-term water resources master plan. Washington, DC: The World Bank.

    Google Scholar 

  • Kay, J., & King, M. (2020). Radical uncertainty: Decision-making beyond the numbers. New York: W. W. Norton.

    Google Scholar 

  • Kishore, N., Marqués, D., Mahmud, A., Kiang, M. V., Rodriguez, I., Fuller, A., Ebner, P., Sorensen, C., Racy, F., & Lemery, J. (2018). Mortality in Puerto Rico after hurricane maria. The New England Journal of Medicine, 379(2), 162–170.

    Article  Google Scholar 

  • Knutti, R., & Sedláček, J. (2013). Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3(4), 369.

    Article  Google Scholar 

  • Krajangsri, T., & Pongpeng, J. (2018). The role of infrastructure sustainability and success of construction projects on owner benefits. In MATEC web of conferences (Vol. 192, p. 2026). EDP Sciences.

    Google Scholar 

  • Kwadijk, J. C. J., Haasnoot, M., Mulder, J. P. M., Hoogvliet, M., Jeuken, A., van der Krogt, R. A. A., van Oostrom, N. G. C., Schelfhout, H. A., van Velzen, E. H., & van Waveren, H. (2010a). Using adaptation tipping points to prepare for climate change and sea level rise: A case study in the Netherlands. Wiley Interdisciplinary Reviews: Climate Change, 1(5), 729–740.

    Google Scholar 

  • Kwadijk, J. C. J., et al. (2010b). Using adaptation tipping points to prepare for climate change and sea level rise: A case study in the Netherlands. Wiley Interdisciplinary Reviews: Climate Change, 1(5), 729–740. https://doi.org/10.1002/wcc.64.

    Article  Google Scholar 

  • Levy, M. C., Lopes, A. V., Cohn, A., Larsen, L. G., & Thompson, S. E. (2018). Land use change increases streamflow across the arc of deforestation in Brazil. Geophysical Research Letters, 45(8), 3520–3530.

    Article  Google Scholar 

  • Lowe, D. C., & Zealand, N. (2007). Changes in atmospheric constituents and in radiative forcing. Change, 30(22), 129–234. https://doi.org/10.1103/PhysRevB.77.220407.

    Article  Google Scholar 

  • Ludwig, F., van Slobbe, E., & Cofino, W. (2014). Climate change adaptation and Integrated Water Resource Management in the water sector. Journal of Hydrology, 518(PB), 235–242. https://doi.org/10.1016/j.jhydrol.2013.08.010.

    Article  Google Scholar 

  • Markham, L. (2019). How climate change is pushing Central American migrants to the US, Sat, 6, 0–6.

    Google Scholar 

  • Méndez, M., & Magaña, V. (2010). Regional aspects of prolonged meteorological droughts over Mexico and Central America. Journal of Climate, 23(5), 1175–1188.

    Article  Google Scholar 

  • Mendoza, G., Jeuken, A., Matthews, J. H., Stakhiv, E., Kucharski, J., & Gilroy, K. (2018). Climate risk informed decision analysis (CRIDA): Collaborative water resources planning for an uncertain future. Paris: UNESCO Publishing.

    Google Scholar 

  • Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z., & Lettenmaier, D. P. (2014). Stationarity is dead: Whither water management? Earth, 4, p.20.

    Google Scholar 

  • IPCC, (2019). Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegriá, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

    Google Scholar 

  • Nicolai, S., Bhatkal, T., Hoy, C., & Aedy, T. (2016). Projecting progress: The SDGs in Latin America and the Caribbean (Dev. Prog. Reg. Scorecard). London: Overseas Development Institute. www.odi.org/sites/odi.org.uk/files/resource-documents/11376.pdf

  • Nosetto, M. D., Jobbágy, E. G., Brizuela, A. B., & Jackson, R. B. (2012). The hydrologic consequences of land cover change in Central Argentina. Agriculture, Ecosystems and Environment, 154, 2–11.

    Article  Google Scholar 

  • Oxford University Environmental Change Institute. (2020). Global warming index. Available from: https://www.globalwarmingindex.org. Accessed 31 July 2020.

  • Paltan, H., Allen, M., Haustein, K., Fuldauer, L., & Dadson, S. (2018). Global implications of 1.5 °C and 2 °C warmer worlds on extreme river flows. Environmental Research Letters, 13, 1–10.

    Google Scholar 

  • Paltán, H., Bassani, M., Minaya, V., & Rezzano, N. (2020). Servicios de agua potable y saneamiento resilientes en América Latina y el Caribe. Washington, DC: VI-Series.

    Book  Google Scholar 

  • Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018). Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 11(1), 22–33.

    Article  Google Scholar 

  • Pitcher, H. M. (2009). The future of scenarios: Issues in developing new climate change scenarios. Environmental Research Letters, 4(2), 025002. https://doi.org/10.1088/1748-9326/4/2/025002.

    Article  Google Scholar 

  • Primicias. (2020). Para hacer uso de este contenido cite la fuente y haga un enlace a la nota original en Primicias.ec: https://www.primicias.ec/noticias/economia/infraestructura-vial-petrolera-electrica-riesgo-erosion-rio-coca/. D. Primicas, 28th July, 3.

  • Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., & Reynard, N. S. (2010). Scenario-neutral approach to climate change impact studies: Application to flood risk. Journal of Hydrology, 390(3–4), 198–209.

    Article  Google Scholar 

  • Ray, P. A., & Brown, C. M. (2015). Confronting climate uncertainty in water resources planning and project design: The decision tree framework. Washington, DC: The World Bank.

    Google Scholar 

  • Ritchie, H., & Roser, M. (2020). Energy. Publ. online OurWorldInData.org.

    Google Scholar 

  • Rocklöv, J., & Tozan, Y. (2019). Climate change and the rising infectiousness of dengue. Emerging Topics in Life Sciences, 3(2), 133–142.

    Article  Google Scholar 

  • Rodríguez-Pose, A., Crescenzi, R., & Di Cataldo, M. (2018). Institutions and the thirst for ‘prestige’ transport infrastructure. In Knowledge and institutions (pp. 227–246). Cham: Springer.

    Chapter  Google Scholar 

  • Rummukainen, M. (2010). State-of-the-art with regional climate models. Wiley Interdisciplinary Reviews: Climate Change, 1(1), 82–96. https://doi.org/10.1002/wcc.008.

    Article  Google Scholar 

  • Saltelli, A., Bammer, G., Bruno, I., Charters, E., Di Fiore, M., Didier, E., Espeland, W. N., Kay, J., Lo Piano, S., & Mayo, D. (2020). Five ways to ensure that models serve society: A manifesto. 482–484.

    Google Scholar 

  • Scott, A. J. (2008). Resurgent metropolis: Economy, society and urbanization in an interconnected world. International Journal of Urban and Regional Research, 32(3), 548–564.

    Article  Google Scholar 

  • Shermeyer, J. (2018). Assessment of electrical and infrastructure recovery in Puerto Rico following hurricane Maria using a multisource time series of satellite imagery. In Earth resources and environmental remote sensing/GIS applications IX (Vol. 10790, p. 1079010). International Society for Optics and Photonics.

    Google Scholar 

  • Solomon, S. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sorensen, A. (2011). Megacity sustainability: Urban form, development, and governance. In Megacities (pp. 397–418). New York: Springer.

    Chapter  Google Scholar 

  • St. George Freeman, S., et al. (2020). Resilience by design in Mexico City: A participatory human-hydrologic systems approach. Water Security, 9, 100053. https://doi.org/10.1016/j.wasec.2019.100053.

    Article  Google Scholar 

  • Stainforth, D. A., Allen, M. R., Tredger, E. R., & Smith, L. A. (2007). Confidence, uncertainty and decision-support relevance in climate predictions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2145–2161.

    Article  Google Scholar 

  • Stakhiv, E. Z. (2011). Pragmatic approaches for water management under climate change uncertainty. JAWRA Journal of the American Water Resources Association, 47(6), 1183–1196.

    Article  Google Scholar 

  • Stupak, J. M. (2017). Economic impact of infrastructure investment. Ithaca, NY: Cornell University ILR School.

    Google Scholar 

  • Thacker, S., Adshead, D., Fay, M., Hallegatte, S., Harvey, M., Meller, H., O’Regan, N., Rozenberg, J., Watkins, G., & Hall, J. W. (2019). Infrastructure for sustainable development. Nature Sustainability, 2(4), 324.

    Article  Google Scholar 

  • The Economist. (2019). Climate change threatens the Panama Canal – Beyond seasonable drought, 21st September, 3.

    Google Scholar 

  • United Nations. (2018a). 2018 revision of world urbanization prospects. United Nations: New York, NY, USA.

    Google Scholar 

  • United Nations. (2018b). Sustaintable Development Goals, knowledge plattform. Available from: https://sustainabledevelopment.un.org/sdg5. Accessed 20 Sept 2003.

  • Van Loon, A. F., et al. (2016). Drought in the Anthropocene. Nature Geoscience, 9(2), 89–91. https://doi.org/10.1038/ngeo2646.

    Article  Google Scholar 

  • Vergara, L. G. C. (2018). Impacto de los Gabinetes Binacionales Perú-Ecuador en la Implementación de Políticas Públicas de Infraestructura en Tumbes. Diss. Pontificia Universidad Catolica del Peru-CENTRUM Catolica (Peru).

    Google Scholar 

  • Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., & Bradley, R. S. (2008). Climate change and tropical Andean glaciers: Past, present and future. Earth Science Reviews, 89(3–4), 79–96. https://doi.org/10.1016/j.earscirev.2008.04.002.

    Article  Google Scholar 

  • Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101–123.

    Article  Google Scholar 

  • Wilby, R. L., & Dessai, S. (2010). Robust adaptation to climate change. Weather, 65(7), 180–185.

    Article  Google Scholar 

  • Wilby, R. L., & Wigley, T. M. L. (1997). Downscaling general circulation model output: A review of methods and limitations. Progress in Physical Geography, 21(4), 530–548.

    Article  Google Scholar 

  • Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Main, J., & Wilks, D. S. (1998). Statistical downscaling of general circulation model output: A comparison of methods. Water Resources Research, 34(11), 2995–3008.

    Article  Google Scholar 

  • Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O., & Brashares, J. S. (2008). Accelerated human population growth at protected area edges. Science (80-. ), 321(5885), 123–126.

    Article  Google Scholar 

  • Zhao, S. X., Guo, N. S., Li, C. L. K., & Smith, C. (2017). Megacities, the world’s largest cities unleashed: Major trends and dynamics in contemporary global urban development. World Development, 98, 257–289.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Paltán, H.A. (2021). Transitioning to Adaptive and Resilient Infrastructure in Latin America and the Caribbean. In: Brears, R.C. (eds) The Palgrave Handbook of Climate Resilient Societies. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-42462-6_124

Download citation

Publish with us

Policies and ethics