Skip to main content

Efficient GPU-Based Numerical Simulation of Cryoablation of the Kidney

  • Conference paper
  • First Online:
Book cover Computational Biomechanics for Medicine (MICCAI 2019, MICCAI 2018)

Abstract

Cryoablation, a minimally invasive technique for treating cancer, could benefit from computer support in planning, intervention and follow-up. For employing such treatment planning in daily clinical routine, individualized simulation of cryoablation needs to be sufficiently accurate and fast. This paper describes a simulation of cryoablation of human kidney permitting high-performance simulations on graphics hardware. The simulation involves partial differential equations modeling temperature evolution and phase changes in the tissue, as well as equations describing the dependence of tissue parameters on tissue temperature. A mushy region approach and a predictor-corrector time stepping scheme are utilized for discretization to achieve an efficient numerical scheme implemented on graphics hardware. The simulation is planned to be integrated in an approved medical device.

J. Georgii and T. Pätz have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in cryoablation, blood vessels act as “warming devices”. Nevertheless, we employ the widely used “heat sink effect” notion seen in the literature.

References

  1. H.D. Baehr, K. Stephan, Wärme- und Stoffübertragung (Springer, Heidelberg, 2010)

    Google Scholar 

  2. R. Baissalov, G.A. Sandison, B.J. Donnelly, J.C. Saliken, J.G. McKinnon, K. Muldrew, J. C. Rewcastle, A semi-empirical treatment planning model for optimization of multiprobe cryosurgery. Phys. Med. Biol. 45(5), 1085–1098 (2000)

    Google Scholar 

  3. H.M. Cheng, D.B. Plewes, Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating. J. Magn. Reson. Imaging 16, 598–609 (2002)

    Google Scholar 

  4. J.H. Choi, J.C. Bischof, Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology. Cryobiology 60(1), 52–70 (2010)

    Google Scholar 

  5. R. Courant, K.O. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics. IBM J. 11(2), 215–234 (1967). https://doi.org/10.1147/rd.112.0215

    MathSciNet  MATH  ADS  Google Scholar 

  6. G. Deshazer, D. Merck, M. Hagmann, D. Dupuy, P. Prakash, Physical modeling of microwave ablation zone clinical margin variance. Med. Phys. 43(4), 1764–1776 (2016)

    Google Scholar 

  7. G. Deshazer, P. Prakash, D. Merck, D. Haemmerich, Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. Int. J. Hyperthermia 33(1), 74–82 (2017)

    Google Scholar 

  8. D.K. Filippiadis, S. Tutton, A. Mazioti, A. Kelekis, Percutaneous image-guided ablation of bone and soft tissue tumours: a review of available techniques and protective measures. Insights Imaging 5(3), 339–346 (2014)

    Google Scholar 

  9. A.A. Gage, J. Baust, Mechanisms of tissue injury in cryosurgery. Cryobiology 37(3), 171–186 (1998)

    Google Scholar 

  10. L. Gavrilă, A. Fînaru, L. Istrati, A.I. Simion, M.E. Ciocan, Influence of temperature, fat and water content on the thermal conductivity of some dairy products. Sci. Res. J. Agroaliment. Processes Technol. 11(1), 205–210 (2005)

    Google Scholar 

  11. P.A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M.C. Gosselin, D. Payne, A. Klingenboeck, N. Kuster, IT’IS database for thermal and electromagnetic parameters of biological tissues, version 4.0 (2018)

    Google Scholar 

  12. L.J. Hayes, K.R. Diller, Implementation of phase change in numerical models of heat transfer. J. Energy Resour. Technol. 105(4), 431–435 (1983)

    Google Scholar 

  13. International Organization for Standardization, Medical devices – quality management systems – requirements for regulatory purposes (ISO Norm 13485:2016) (2016)

    Google Scholar 

  14. R. Keelan, H. Zhang, K. Shimada, Y. Rabin, Graphics processing unit-based bioheat simulation to facilitate rapid decision making associated with cryosurgery training. Technol. Cancer Res. Treat. 15(2), 377–386 (2016)

    Google Scholar 

  15. F. Liu, P. Liang, X. Yu, T. Lu, Z. Cheng, C. Lei, Z. Han, A three-dimensional visualisation preoperative treatment planning system in microwave ablation for liver cancer: a preliminary clinical application. Int. J. Hyperthermia 29(7), 671–677 (2013)

    Google Scholar 

  16. H.H. Mitchell, T.S. Hamilton, F.R. Steggerda, H.W. Bean, The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 158, 625–637 (1945)

    Google Scholar 

  17. H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)

    ADS  Google Scholar 

  18. Q.T. Pham, J. Willix, Thermal conductivity of fresh lamb meat, offals and fat in the range −40 to + 30C: measurements and correlations. J. Food Sci. 54(3), 508–515 (1989)

    Google Scholar 

  19. Y. Rabin, K. Shimada, P. Joshi, A. Sehrawat, R. Keelan, D.M. Wilfong, J.T. McCormick, A computerized tutor prototype for prostate cryotherapy: key building blocks and system evaluation. Proc. SPIE Int. Soc. Opt. Eng. 10066 (2017)

    Google Scholar 

  20. Y. Rabin, A. Shitzer, Numerical solution of the multidimensional freezing problem during cryosurgery. J. Biomech. Eng. 120(1), 32–37 (2007)

    Google Scholar 

  21. K.F. Ross, R.E. Gordon, Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance. J. Microsc. 128(1), 7–21 (1982)

    Google Scholar 

  22. M.R. Rossi, Y. Rabin, Experimental verification of numerical simulations of cryosurgery with application to computerized planning. Phys. Med. Biol. 52(15), 4553–4567 (2007)

    Google Scholar 

  23. M.R. Rossi, D. Tanaka, K. Shimada, Y. Rabin, An efficient numerical technique for bioheat simulations and its application to computerized cryosurgery planning. Comput. Methods Programs Biomed. 1(85), 41–50 (2007)

    Google Scholar 

  24. C. Rossmann, D. Haemmerich, Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit. Rev. Biomed. Eng. 42(6), 467–492 (2014)

    Google Scholar 

  25. Rotes Kreuz Austria, Die Zusammensetzung unseres Blutes, call: 2018/09/19. https://www.roteskreuz.at/blutspende/blut-im-detail/wissenswertes-ueber-blut/blutbestandteile/

  26. R. Schmidt, G. Thews, Physiologie des Menschen (Springer, Berlin/Heidelberg, 1995)

    Google Scholar 

  27. C. Schumann, C. Rieder, J. Bieberstein, A. Weihusen, S. Zidowitz, J.H. Moltz, T. Preusser, State of the art in computer-assisted planning, intervention, and assessment of liver-tumor ablation. Crit. Rev. Biomed. Eng. 38(1), 31–52 (2010)

    Google Scholar 

  28. A. Sehrawat, R. Keelan, K. Shimada, D.M. Wilfong, J.T. McCormick, Y. Rabin, Simulation-based cryosurgery training: variable insertion depth planning in prostate cryosurgery. Technol. Cancer Res. Treat. 15(6), 805–814, 12 (2016)

    Google Scholar 

  29. T.-C. Shih, H.-S. Kou, W.-L. Lin, Effect of effective tissue conductivity on thermal dose distributions of living tissue with directional blood flow during thermal therapy. Int. Commun. Heat Mass Transf. 29(1), 115–126 (2002)

    Google Scholar 

  30. T. Stein, Untersuchungen zur Dosimetrie der hochfrequenzstrominduzierten interstitiellen Thermotherapie in bipolarer Technik, vol. 22 of Fortschritte in der Lasermedizin (Ecomed Verlagsgesellschaft AG & Co. KG, 2000)

    Google Scholar 

  31. J.W. Valvano, J.R. Cochran, K.R. Diller, Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int. J. Thermophys. 6(3), 301–311 (1985)

    ADS  Google Scholar 

  32. A. Weihusen, F. Ritter, T. Kröger, T. Preusser, S. Zidowitz, H.-O. Peitgen, in Workflow Oriented Software Support for Image Guided Radiofrequency Ablation of Focal Liver Malignancies, ed. by K.R. Cleary, M.I. Miga, Proceedings SPIE (2007), pp. 650919–650919–9

    Google Scholar 

  33. S. Weinbaum, L.M. Jiji, A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J. Biomech. Eng. 107(2), 131–139 (1985)

    Google Scholar 

  34. S. Yılmaz, M. Özdoğan, M. Cevener, A. Ozluk, A. Kargi, F. Kendiroglu, I. Ogretmen, A. Yildiz, Use of cryoablation beyond the prostate. Insights Imaging 7(2), 223–232 (2016)

    Google Scholar 

  35. J. Zhang, G.A. Sandison, J.Y. Murthy, L.X. Xu, Numerical simulation for heat transfer in prostate cancer cryosurgery. J. Biomech. Eng. 127(2), 279–294, 09 (2004)

    Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. A. Mahnken for providing the dataset shown in Fig. 6. Furthermore, we thank our colleague D. Black for proofreading the manuscript. This work was partly supported by the FhG Internal Programs under Grant No. MEF 142-600369.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgii, J. et al. (2020). Efficient GPU-Based Numerical Simulation of Cryoablation of the Kidney. In: Miller, K., Wittek, A., Joldes, G., Nash, M., Nielsen, P. (eds) Computational Biomechanics for Medicine. MICCAI MICCAI 2019 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-42428-2_11

Download citation

Publish with us

Policies and ethics