Skip to main content

Arrhythmia-Induced Cardiomyopathies

  • Chapter
  • First Online:
Management of Cardiac Arrhythmias

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1402 Accesses

Abstract

Arrhythmia-induced cardiomyopathy is a condition where sustained atrial and ventricular arrhythmias as well as ventricular ectopy result in cardiomyopathy and heart failure. Suppression/elimination of culprit arrhythmia results in partial or complete recovery of left ventricular (LV) function. This condition can develop in all age groups, in structurally normal hearts, and in patients with structural heart disease as well. Diagnosing the condition at clinical presentation is challenging and is usually accomplished following recovery of LV function with arrhythmia treatment. Thus, a very high index of suspicion is required for diagnosis. Early and aggressive treatment of culprit arrhythmias, with a focus on curative therapies, is warranted for recovery of LV function and improvement of symptoms. However, ultrastructural changes can persist following myocardial recovery resulting in vulnerability to recurrent arrhythmia and have implications toward long-term prognosis. Several knowledge gaps exist, especially regarding mechanistic understanding, early diagnosis, optimal management strategies, and long-term prognosis, and should guide future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAD:

Anti-arrhythmic drugs

ACE:

Angiotensin-converting enzyme

AF:

Atrial fibrillation

AIC:

Arrhythmia-induced cardiomyopathy

AT:

Atrial tachycardia

AVNRT:

Atrioventricular nodal reentrant tachycardia

AVRT:

Atrioventricular reentrant tachycardia

CMP:

Cardiomyopathy

CRT:

Cardiac resynchronization therapy

HF:

Heart failure

ICD:

Implantable cardioverter defibrillator

JET:

Junctional ectopic tachycardia

LV:

Left ventricular/left ventricle

LVEDD:

Left ventricular end-diastolic diameter

LVEF:

Left ventricular ejection fraction

NT-pro-BNP:

N-terminal pro-B-type natriuretic peptide

PJRT:

Permanent junctional reciprocating tachycardia

POTS:

Postural orthostatic tachycardia syndrome

PVC:

Premature ventricular contraction

RV:

Right ventricular/right ventricle

SVT:

Supraventricular tachycardia

VT:

Ventricular tachycardia

References

  1. Gopinathannair R, Etheridge SP, Marchlinski FE, Spinale FG, Lakkireddy D, Olshansky B. Arrhythmia-induced cardiomyopathies: mechanisms, recognition, and management. J Am Coll Cardiol. 2015;66(15):1714–28.

    PubMed  PubMed Central  Google Scholar 

  2. Huizar JF, Ellenbogen KA, Tan AY, Kaszala K. Arrhythmia-induced cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(18):2328–44.

    PubMed  PubMed Central  Google Scholar 

  3. Gossage AM, Hicks JAB. On auricular fibrillation. QJM. 1913;os6(4):435–40.

    Google Scholar 

  4. Phillips E, Levine SA. Auricular fibrillation without other evidence of heart disease; a cause of reversible heart failure. Am J Med. 1949;7(4):478–89.

    CAS  PubMed  Google Scholar 

  5. Natale A, Zimerman L, Tomassoni G, Kearney M, Kent V, Brandon MJ, et al. Impact on ventricular function and quality of life of transcatheter ablation of the atrioventricular junction in chronic atrial fibrillation with a normal ventricular response. Am J Cardiol. 1996;78(12):1431–3.

    CAS  PubMed  Google Scholar 

  6. Fenelon G, Wijns W, Andries E, Brugada P. Tachycardiomyopathy: mechanisms and clinical implications. Pacing Clin Electrophysiol. 1996;19(1):95–106.

    CAS  PubMed  Google Scholar 

  7. Blanc J-J, Fatemi M, Bertault V, Baraket F, Etienne Y. Evaluation of left bundle branch block as a reversible cause of non-ischaemic dilated cardiomyopathy with severe heart failure. A new concept of left ventricular dyssynchrony-induced cardiomyopathy. Europace. 2005;7(6):604–10.

    PubMed  Google Scholar 

  8. Siu C-W, Yeung C-Y, Lau C-P, Kung AW, Tse H-F. Incidence, clinical characteristics and outcome of congestive heart failure as the initial presentation in patients with primary hyperthyroidism. Heart. 2007;93(4):483–7.

    PubMed  Google Scholar 

  9. Vaillant C, Martins RP, Donal E, Leclercq C, Thébault C, Behar N, et al. Resolution of left bundle branch block–induced cardiomyopathy by cardiac resynchronization therapy. J Am Coll Cardiol. 2013;61(10):1089–95.

    PubMed  Google Scholar 

  10. Winum PF, Cayla G, Rubini M, Beck L, Messner-Pellenc P. A case of cardiomyopathy induced by inappropriate sinus tachycardia and cured by ivabradine. Pacing Clin Electrophysiol. 2009;32(7):942–4.

    PubMed  Google Scholar 

  11. Maisel WH, Stevenson LW. Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol. 2003;91(6):2–8.

    Google Scholar 

  12. Fujino T, Yamashita T, Suzuki S, Sugiyma H, Sagara K, Sawada H, et al. Characteristics of congestive heart failure accompanied by atrial fibrillation with special reference to tachycardia-induced cardiomyopathy. Circ J. 2007;71(6):936–40.

    PubMed  Google Scholar 

  13. Redfield MM, Kay GN, Jenkins LS, Mianulli M, Jensen DN, Ellenbogen KA, et al. Tachycardia-related cardiomyopathy: a common cause of ventricular dysfunction in patients with atrial fibrillation referred for atrioventricular ablation. Mayo Clin Proc. 2000;75(8):790–5.

    CAS  PubMed  Google Scholar 

  14. Spinale FG, Zellner JL, Johnson WS, Eble DM, Munyer PD. Cellular and extracellular remodeling with the development and recovery from tachycardia-induced cardiomyopathy: changes in fibrillar collagen, myocyte adhesion capacity and proteoglycans. J Mol Cell Cardiol. 1996;28(8):1591–608.

    CAS  PubMed  Google Scholar 

  15. Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA Jr. Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res. 1991;69(3):590–600.

    CAS  PubMed  Google Scholar 

  16. Spinale FG, Hendrick DA, Crawford FA, Smith AC, Hamada Y, Carabello BA. Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am J Physiol. 1990;259(1 Pt 2):H218–29.

    CAS  PubMed  Google Scholar 

  17. Kajstura J, Zhang X, Liu Y, Szoke E, Cheng W, Olivetti G, et al. The cellular basis of pacing-induced dilated cardiomyopathy: myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation. 1995;92(8):2306–17.

    CAS  PubMed  Google Scholar 

  18. He J-Q, Conklin MW, Foell JD, Wolff MR, Haworth RA, Coronado R, et al. Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia-induced heart failure. Cardiovasc Res. 2001;49(2):298–307.

    CAS  PubMed  Google Scholar 

  19. Spinale FG, Clayton C, Tanaka R, Fulbright BM, Mukherjee R, Schulte BA, et al. Myocardial Na+, K+-ATPase in tachycardia induced cardiomyopathy. J Mol Cell Cardiol. 1992;24(3):277–94.

    CAS  PubMed  Google Scholar 

  20. Tsuji Y, Opthof T, Kamiya K, Yasui K, Liu W, Lu Z, et al. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res. 2000;48(2):300–9.

    CAS  PubMed  Google Scholar 

  21. Selby DE, Palmer BM, LeWinter MM, Meyer M. Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J Am Coll Cardiol. 2011;58(2):147–54.

    PubMed  PubMed Central  Google Scholar 

  22. Schotten U, Greiser M, Benke D, Buerkel K, Ehrenteidt B, Stellbrink C, et al. Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort. Cardiovasc Res. 2002;53(1):192–201.

    CAS  PubMed  Google Scholar 

  23. Wakili R, Yeh Y-H, Yan Qi X, Greiser M, Chartier D, Nishida K, et al. Multiple potential molecular contributors to atrial hypocontractility caused by atrial tachycardia remodeling in dogs. Circ Arrhythm Electrophysiol. 2010;3(5):530–41.

    CAS  PubMed  Google Scholar 

  24. Shite J, Qin F, Mao W, Kawai H, Stevens SY, Liang C-S. Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol. 2001;38(6):1734–40.

    CAS  PubMed  Google Scholar 

  25. O’Brien PJ, Ianuzzo CD, Moe GW, Stopps TP, Armstrong PW. Rapid ventricular pacing of dogs to heart failure: biochemical and physiological studies. Can J Physiol Pharmacol. 1990;68(1):34–9.

    PubMed  Google Scholar 

  26. Spinale FG, Tanaka R, Crawford FA, Zile MR. Changes in myocardial blood flow during development of and recovery from tachycardia-induced cardiomyopathy. Circulation. 1992;85(2):717–29.

    CAS  PubMed  Google Scholar 

  27. Tomita M, Spinale F, Crawford F, Zile M. Changes in left ventricular volume, mass, and function during the development and regression of supraventricular tachycardia-induced cardiomyopathy. Disparity between recovery of systolic versus diastolic function. Circulation. 1991;83(2):635–44.

    CAS  PubMed  Google Scholar 

  28. Timek TA, Dagum P, Lai DT, Liang D, Daughters GT, Ingels NB Jr, et al. Pathogenesis of mitral regurgitation in tachycardia-induced cardiomyopathy. Circulation. 2001;104(suppl_1):I-47–53.

    CAS  Google Scholar 

  29. Burchell S, Spinale F, Crawford F, Tanaka R, Zile M. Effects of chronic tachycardia-induced cardiomyopathy on the beta-adrenergic receptor system. J Thorac Cardiovasc Surg. 1992;104(4):1006–12.

    CAS  PubMed  Google Scholar 

  30. Deshmukh PM, Krishnamani R, Romanyshyn M, Johnson AK, Noti JD. Association of angiotensin converting enzyme gene polymorphism with tachycardia cardiomyopathy. Int J Mol Med. 2004;13(3):455–8.

    CAS  PubMed  Google Scholar 

  31. Spinale FG, de Gasparo M, Whitebread S, Hebbar L, Clair MJ, Melton DM, et al. Modulation of the renin-angiotensin pathway through enzyme inhibition and specific receptor blockade in pacing-induced heart failure: I. Effects on left ventricular performance and neurohormonal systems. Circulation. 1997;96(7):2385–96.

    CAS  PubMed  Google Scholar 

  32. Spinale FG, Holzgrefe HH, Mukherjee R, Hird RB, Walker JD, Arnim-Barker A, et al. Angiotensin-converting enzyme inhibition and the progression of congestive cardiomyopathy: effects on left ventricular and myocyte structure and function. Circulation. 1995;92(3):562–78.

    CAS  PubMed  Google Scholar 

  33. Ferreira JP, Santos M. Heart failure and atrial fibrillation: from basic science to clinical practice. Int J Mol Sci. 2015;16(2):3133–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cha YM, Redfield MM, Shen WK, Gersh BJ. Atrial fibrillation and ventricular dysfunction: a vicious electromechanical cycle. Circulation. 2004;109(23):2839–43.

    PubMed  Google Scholar 

  35. Nedios S, Sommer P, Dagres N, Kosiuk J, Arya A, Richter S, et al. Long-term follow-up after atrial fibrillation ablation in patients with impaired left ventricular systolic function: the importance of rhythm and rate control. Heart Rhythm. 2014;11(3):344–51.

    PubMed  Google Scholar 

  36. Walters TE, Rahmutula D, Szilagyi J, Alhede C, Sievers R, Fang Q, et al. Left ventricular dyssynchrony predicts the cardiomyopathy associated with premature ventricular contractions. J Am Coll Cardiol. 2018;72(23 Pt A):2870–82.

    PubMed  Google Scholar 

  37. Wang Y, Eltit JM, Kaszala K, Tan A, Jiang M, Zhang M, et al. Cellular mechanism of premature ventricular contraction-induced cardiomyopathy. Heart Rhythm. 2014;11(11):2064–72.

    PubMed  PubMed Central  Google Scholar 

  38. Spinale FG, Fulbright BM, Mukherjee R, Tanaka R, Hu J, Crawford FA, et al. Relation between ventricular and myocyte function with tachycardia-induced cardiomyopathy. Circ Res. 1992;71(1):174–87.

    CAS  PubMed  Google Scholar 

  39. Nerheim P, Birger-Botkin S, Piracha L, Olshansky B. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation. 2004;110(3):247–52.

    PubMed  Google Scholar 

  40. Hsu LF, Jais P, Sanders P, Garrigue S, Hocini M, Sacher F, et al. Catheter ablation for atrial fibrillation in congestive heart failure. N Engl J Med. 2004;351(23):2373–83.

    CAS  PubMed  Google Scholar 

  41. Prabhu S, Taylor AJ, Costello BT, Kaye DM, McLellan AJA, Voskoboinik A, et al. Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI study. J Am Coll Cardiol. 2017;70(16):1949–61.

    PubMed  Google Scholar 

  42. Medi C, Kalman JM, Haqqani H, Vohra JK, Morton JB, Sparks PB, et al. Tachycardia-mediated cardiomyopathy secondary to focal atrial tachycardia: long-term outcome after catheter ablation. J Am Coll Cardiol. 2009;53(19):1791–7.

    PubMed  Google Scholar 

  43. Camm AJ, Evans K, Ward D, Martin A. The rhythm of the heart in active elderly subjects. Am Heart J. 1980;99(5):598–603.

    CAS  PubMed  Google Scholar 

  44. Chen T, Koene R, Benditt DG, Lü F. Ventricular ectopy in patients with left ventricular dysfunction: should it be treated? J Card Fail. 2013;19(1):40–9.

    CAS  PubMed  Google Scholar 

  45. Kanei Y, Friedman M, Ogawa N, Hanon S, Lam P, Schweitzer P. Frequent premature ventricular complexes originating from the right ventricular outflow tract are associated with left ventricular dysfunction. Ann Noninvasive Electrocardiol. 2008;13(1):81–5.

    PubMed  PubMed Central  Google Scholar 

  46. Baman TS, Lange DC, Ilg KJ, Gupta SK, Liu T-Y, Alguire C, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm. 2010;7(7):865–9.

    PubMed  Google Scholar 

  47. Ban J-E, Park H-C, Park J-S, Nagamoto Y, Choi J-I, Lim H-E, et al. Electrocardiographic and electrophysiological characteristics of premature ventricular complexes associated with left ventricular dysfunction in patients without structural heart disease. Europace. 2013;15(5):735–41.

    PubMed  Google Scholar 

  48. Des Carpio Munoz F, Syed FF, Noheria A, Cha YM, Friedman PA, Hammill SC, et al. Characteristics of premature ventricular complexes as correlates of reduced left ventricular systolic function: study of the burden, duration, coupling interval, morphology and site of origin of PVCs. J Cardiovasc Electrophysiol. 2011;22(7):791–8.

    Google Scholar 

  49. Yokokawa M, Kim HM, Good E, Crawford T, Chugh A, Pelosi F Jr, et al. Impact of QRS duration of frequent premature ventricular complexes on the development of cardiomyopathy. Heart Rhythm. 2012;9(9):1460–4.

    PubMed  Google Scholar 

  50. Blaye-Felice MS, Hamon D, Sacher F, Pascale P, Rollin A, Duparc A, et al. Premature ventricular contraction-induced cardiomyopathy: related clinical and electrophysiologic parameters. Heart Rhythm. 2016;13(1):103–10.

    Google Scholar 

  51. Nakano Y, Ochi H, Sairaku A, Onohara Y, Tokuyama T, Motoda C, et al. HCN4 gene polymorphisms are associated with occurrence of tachycardia-induced cardiomyopathy in patients with atrial fibrillation. Circ Genom Precis Med. 2018;11(7):e001980.

    CAS  PubMed  Google Scholar 

  52. Raymond-Paquin A, Nattel S, Wakili R, Tadros R. Mechanisms and clinical significance of arrhythmia-induced cardiomyopathy. Can J Cardiol. 2018;34(11):1449–60.

    PubMed  Google Scholar 

  53. Yokokawa M, Kim HM, Good E, Chugh A, Pelosi F Jr, Alguire C, et al. Relation of symptoms and symptom duration to premature ventricular complex–induced cardiomyopathy. Heart Rhythm. 2012;9(1):92–5.

    PubMed  Google Scholar 

  54. Gallagher JJ. Tachycardia and cardiomyopathy: the chicken-egg dilemma revisited. J Am Coll Cardiol. 1985;6(5):1172–3.

    CAS  PubMed  Google Scholar 

  55. Zwicker C, Becker M, Lepper W, Koch KC, Westenfeld R. Cardiogenic shock due to tachycardiomyopathy after heart transplantation: successful treatment with ivabradine. Cardiology. 2010;116(3):174–7.

    CAS  PubMed  Google Scholar 

  56. Krapp M, Gembruch U, Baumann P. Venous blood flow pattern suggesting tachycardia-induced ‘cardiomyopathy’ in the fetus. Ultrasound Obstet Gynecol. 1997;10(1):32–40.

    CAS  PubMed  Google Scholar 

  57. Dhawan R, Gopinathannair R. Arrhythmia-induced cardiomyopathy: prevalent, under-recognized, reversible. J Atr Fibrillation. 2017;10(3):1776.

    PubMed  PubMed Central  Google Scholar 

  58. Watanabe H, Okamura K, Chinushi M, Furushima H, Tanabe Y, Kodama M, et al. Clinical characteristics, treatment, and outcome of tachycardia induced cardiomyopathy. Int Heart J. 2008;49(1):39–47.

    CAS  PubMed  Google Scholar 

  59. Okada A, Nakajima I, Morita Y, Inoue YY, Kamakura T, Wada M, et al. Diagnostic value of right ventricular dysfunction in tachycardia-induced cardiomyopathy using cardiac magnetic resonance imaging. Circ J. 2016;80(10):2141–8.

    PubMed  Google Scholar 

  60. Kusunose K, Torii Y, Yamada H, Nishio S, Hirata Y, Seno H, et al. Clinical utility of longitudinal strain to predict functional recovery in patients with tachyarrhythmia and reduced LVEF. JACC Cardiovasc Imaging. 2017;10(2):118–26.

    PubMed  Google Scholar 

  61. Campos B, Jauregui ME, Park KM, Mountantonakis SE, Gerstenfeld EP, Haqqani H, et al. New unipolar electrogram criteria to identify irreversibility of nonischemic left ventricular cardiomyopathy. J Am Coll Cardiol. 2012;60(21):2194–204.

    PubMed  Google Scholar 

  62. Nia AM, Gassanov N, Dahlem KM, Caglayan E, Hellmich M, Erdmann E, et al. Diagnostic accuracy of NT-proBNP ratio (BNP-R) for early diagnosis of tachycardia-mediated cardiomyopathy: a pilot study. Clin Res Cardiol. 2011;100(10):887–96.

    PubMed  Google Scholar 

  63. Agarwal V, Vittinghoff E, Whitman IR, Dewland TA, Dukes JW, Marcus GM. Relation between ventricular premature complexes and incident heart failure. Am J Cardiol. 2017;119(8):1238–42.

    PubMed  Google Scholar 

  64. Loring Z, Hanna P, Pellegrini CN. Longer ambulatory ECG monitoring increases identification of clinically significant ectopy. Pacing Clin Electrophysiol. 2016;39(6):592–7.

    PubMed  Google Scholar 

  65. Yancy C, Jessup M, Bozkurt B. Task force on clinical practice guidelines and the Heart Failure Society of America of Heart Failure: a report of the American College of Cardiology/American Heart Association 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management. Circulation. 2017;136:e137–61.

    PubMed  Google Scholar 

  66. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    PubMed  Google Scholar 

  67. Vamos M, Erath JW, Benz AP, Lopes RD, Hohnloser SH. Meta-analysis of effects of digoxin on survival in patients with atrial fibrillation or heart failure: an update. Am J Cardiol. 2019;123(1):69–74.

    CAS  PubMed  Google Scholar 

  68. Olshansky B, Rosenfeld LE, Warner AL, Solomon AJ, O’Neill G, Sharma A, et al. The Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study: approaches to control rate in atrial fibrillation. J Am Coll Cardiol. 2004;43(7):1201–8.

    PubMed  Google Scholar 

  69. Van Gelder IC, Groenveld HF, Crijns HJ, Tuininga YS, Tijssen JG, Alings AM, et al. Lenient versus strict rate control in patients with atrial fibrillation. New Engl J Med. 2010;362(15):1363–73.

    PubMed  Google Scholar 

  70. Sairaku A, Nakano Y, Oda N, Uchimura Y, Tokuyama T, Kawazoe H, et al. Incomplete cure of tachycardia-induced cardiomyopathy secondary to rapid atrial fibrillation by heart rate control without sinus conversion. J Cardiovasc Electrophysiol. 2014;25(10):1037–43.

    PubMed  Google Scholar 

  71. Orlov MV, Gardin JM, Slawsky M, Bess RL, Cohen G, Bailey W, et al. Biventricular pacing improves cardiac function and prevents further left atrial remodeling in patients with symptomatic atrial fibrillation after atrioventricular node ablation. Am Heart J. 2010;159(2):264–70.

    PubMed  Google Scholar 

  72. Khan MN, Jaïs P, Cummings J, Di Biase L, Sanders P, Martin DO, et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. New Engl J Med. 2008;359(17):1778–85.

    CAS  PubMed  Google Scholar 

  73. Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo: the cardiac arrhythmia suppression trial. New Engl J Med. 1991;324(12):781–8.

    CAS  PubMed  Google Scholar 

  74. Waldo AL, Camm AJ, DeRuyter H, Friedman PL, MacNeil DJ, Pauls JF, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Lancet. 1996;348(9019):7–12.

    CAS  PubMed  Google Scholar 

  75. Køber L, Torp-Pedersen C, McMurray JJ, Gøtzsche O, Lévy S, Crijns H, et al. Increased mortality after dronedarone therapy for severe heart failure. New Engl J Med. 2008;358(25):2678–87.

    PubMed  Google Scholar 

  76. Hohnloser SH, Kuck K-H, Lilienthal J, Investigators P. Rhythm or rate control in atrial fibrillation—Pharmacological Intervention in Atrial Fibrillation (PIAF): a randomised trial. Lancet. 2000;356(9244):1789–94.

    CAS  PubMed  Google Scholar 

  77. Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. New Engl J Med. 2008;358(25):2667–77.

    CAS  PubMed  Google Scholar 

  78. Shelton RJ, Clark AL, Goode K, Rigby AS, Houghton T, Kaye GC, et al. A randomised, controlled study of rate versus rhythm control in patients with chronic atrial fibrillation and heart failure:(CAFE-II study). Heart. 2009;95(11):924–30.

    CAS  PubMed  Google Scholar 

  79. Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347(23):1825–33.

    CAS  PubMed  Google Scholar 

  80. Corley SD, Epstein AE, DiMarco JP, Domanski MJ, Geller N, Greene HL, et al. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) study. Circulation. 2004;109(12):1509–13.

    PubMed  Google Scholar 

  81. Batul SA, Gopinathannair R. Atrial fibrillation in heart failure: a therapeutic challenge of our times. Korean Circ J. 2017;47(5):644–62.

    PubMed  PubMed Central  Google Scholar 

  82. Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakkireddy D, et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation. 2016;133(17):1637–44.

    PubMed  Google Scholar 

  83. Marrouche NF, Kheirkhahan M, Brachmann J. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;379(5):492.

    PubMed  Google Scholar 

  84. Ganesan AN, Nandal S, Lueker J, Pathak RK, Mahajan R, Twomey D, et al. Catheter ablation of atrial fibrillation in patients with concomitant left ventricular impairment: a systematic review of efficacy and effect on ejection fraction. Heart Lung Circ. 2015;24(3):270–80.

    PubMed  Google Scholar 

  85. Batul SA, Gopinathannair R. The timing and role of atrial fibrillation ablation in heart failure patients. Curr Cardiovasc Risk Rep. 2018;12(23):1–9.

    Google Scholar 

  86. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. J Arrhythm. 2017;33(5):369–409.

    PubMed  PubMed Central  Google Scholar 

  87. Adademir T, Khiabani AJ, Schill MR, Sinn LA, Schuessler RB, Moon MR, et al. Surgical ablation of atrial fibrillation in patients with tachycardia-induced cardiomyopathy. Ann Thorac Surg. 2019;108(2):443–50.

    PubMed  Google Scholar 

  88. Blomstrom-Lundqvist C, Scheinman MM, Aliot EM, Alpert JS, Calkins H, Camm AJ, et al. ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias--executive summary. A report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to develop guidelines for the management of patients with supraventricular arrhythmias) developed in collaboration with NASPE-Heart Rhythm Society. J Am Coll Cardiol. 2003;42(8):1493–531.

    PubMed  Google Scholar 

  89. Perez FJ, Schubert CM, Parvez B, Pathak V, Ellenbogen KA, Wood MA. Long-term outcomes after catheter ablation of cavo-tricuspid isthmus dependent atrial flutter: a meta-analysis. Circ Arrhythm Electrophysiol. 2009;2(4):393–401.

    PubMed  Google Scholar 

  90. Singh SN, Fletcher RD, Fisher SG, Singh BN, Lewis HD, Deedwania PC, et al. Amiodarone in patients with congestive heart failure and asymptomatic ventricular arrhythmia. New Engl J Med. 1995;333(2):77–82.

    CAS  PubMed  Google Scholar 

  91. Zhong L, Lee YH, Huang XM, Asirvatham SJ, Shen WK, Friedman PA, et al. Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: a single-center retrospective study. Heart Rhythm. 2014;11(2):187–93.

    PubMed  Google Scholar 

  92. Taieb JM, Maury P, Shah D, Duparc A, Galinier M, Delay M, et al. Reversal of dilated cardiomyopathy by the elimination of frequent left or right premature ventricular contractions. J Interv Card Electrophysiol. 2007;20(1–2):9–13.

    PubMed  Google Scholar 

  93. Wijnmaalen AP, Delgado V, Schalij MJ, van Taxis CFVH, Holman ER, Bax JJ, et al. Beneficial effects of catheter ablation on left ventricular and right ventricular function in patients with frequent premature ventricular contractions and preserved ejection fraction. Heart. 2010;96(16):1275–80.

    PubMed  Google Scholar 

  94. Lakkireddy D, Di Biase L, Ryschon K, Biria M, Swarup V, Reddy YM, et al. Radiofrequency ablation of premature ventricular ectopy improves the efficacy of cardiac resynchronization therapy in nonresponders. J Am Coll Cardiol. 2012;60(16):1531–9.

    PubMed  Google Scholar 

  95. Mountantonakis SE, Frankel DS, Gerstenfeld EP, Dixit S, Lin D, Hutchinson MD, et al. Reversal of outflow tract ventricular premature depolarization-induced cardiomyopathy with ablation: effect of residual arrhythmia burden and preexisting cardiomyopathy on outcome. Heart Rhythm. 2011;8(10):1608–14.

    PubMed  Google Scholar 

  96. Penela D, Martínez M, Fernández-Armenta J, Aguinaga L, Tercedor L, Ordóñez A, et al. Influence of myocardial scar on the response to frequent premature ventricular complex ablation. Heart. 2019;105(5):378–83.

    PubMed  Google Scholar 

  97. Ellis ER, Josephson ME. Heart failure and tachycardia-induced cardiomyopathy. Curr Heart Fail Rep. 2013;10(4):296–306.

    PubMed  Google Scholar 

  98. Bogun F, Crawford T, Reich S, Koelling TM, Armstrong W, Good E, et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm. 2007;4(7):863–7.

    PubMed  Google Scholar 

  99. Ilkhanoff L, Gerstenfeld EP, Zado ES, Marchlinski FE. Changes in ventricular dimensions and function during recovery of atrial tachycardia-induced cardiomyopathy treated with catheter ablation. J Cardiovasc Electrophysiol. 2007;18(10):1104–6.

    PubMed  Google Scholar 

  100. Yokokawa M, Good E, Crawford T, Chugh A, Pelosi F Jr, Latchamsetty R, et al. Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Heart Rhythm. 2013;10(2):172–5.

    PubMed  Google Scholar 

  101. Van Gelder IC, Crijns HJ, Blanksma PK, Landsman ML, Posma JL, Van Den Berg MP, et al. Time course of hemodynamic changes and improvement of exercise tolerance after cardioversion of chronic atrial fibrillation unassociated with cardiac valve disease. Am J Cardiol. 1993;72(7):560–6.

    PubMed  Google Scholar 

  102. Penela D, Van Huls Vans Taxis C, Aguinaga L, Fernandez-Armenta J, Mont L, et al. Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: a prospective multicenter study. J Am Coll Cardiol. 2013;62(13):1195–202.

    CAS  PubMed  Google Scholar 

  103. Deyell MW, Park K-M, Han Y, Frankel DS, Dixit S, Cooper JM, et al. Predictors of recovery of left ventricular dysfunction after ablation of frequent ventricular premature depolarizations. Heart Rhythm. 2012;9(9):1465–72.

    PubMed  Google Scholar 

  104. Dhawan R, Olshansky B, Murray A, Farid TA, Lakkireddy D, Gopinathannair R. Predicting myocardial recovery in arrhythmia induced cardiomyopathy patients: role of index left ventricular function and underlying structural heart disease. Heart Rhythm. 2018;15(5):97–8.

    Google Scholar 

  105. Ling LH, Kalman JM, Ellims AH, Iles LM, Medi C, Sherratt C, et al. Diffuse ventricular fibrosis is a late outcome of tachycardia-mediated cardiomyopathy after successful ablation. Circ Arrhythm Electrophysiol. 2013;6(4):697–704.

    PubMed  Google Scholar 

  106. Dandamudi G, Rampurwala AY, Mahenthiran J, Miller JM, Das MK. Persistent left ventricular dilatation in tachycardia-induced cardiomyopathy patients after appropriate treatment and normalization of ejection fraction. Heart Rhythm. 2008;5(8):1111–4.

    PubMed  Google Scholar 

  107. Ezekowitz JA, O’Meara E, McDonald MA, Abrams H, Chan M, Ducharme A, et al. 2017 comprehensive update of the Canadian Cardiovascular Society guidelines for the management of heart failure. Can J Cardiol. 2017;33(11):1342–433.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Gopinathannair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhawan, R., Gopinathannair, R. (2020). Arrhythmia-Induced Cardiomyopathies. In: Yan, GX., Kowey, P., Antzelevitch, C. (eds) Management of Cardiac Arrhythmias. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-41967-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41967-7_24

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-41966-0

  • Online ISBN: 978-3-030-41967-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics