Skip to main content

Reactive Intermediates Generated from Bioactivation

  • Chapter
  • First Online:
Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense
  • 387 Accesses

Abstract

The increased toxicity of metabolic intermediates or metabolites is primarily the results of the conversion of xenobiotics into chemically reactive species such as reactive oxygen/nitrogen species, free radicals, or positively or neutral charged electrophiles. Electrophilic intermediates are consisted of nonionic and cationic species. Nonionic electrophilic intermediates are such as aldehydes, ketones, epoxides, quinones, sulfoxides, nitroso compounds, and acyl halides, while cationic electrophilic intermediates include carbonium ions and nitrenium ions. Chemically reactive species can interact with proteins, DNA, and lipids, leading to protein adducts, DNA adducts, and lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Amacher DE (2006) Reactive intermediates and the pathogenesis of adverse drug reactions: the toxicology perspective. Curr Drug Metab 7:219–229

    Article  CAS  PubMed  Google Scholar 

  • Anders MW (2007) Chemical toxicology of reactive intermediates formed by the glutathione-dependent bioactivation of halogen-containing compounds. Chem Res Toxicol 21:145–159

    Article  PubMed  Google Scholar 

  • Anders MW (1985) Bioactivation of foreign compounds. Academic, New York

    Google Scholar 

  • Anderson D (2001) Genetic and reproductive toxicity of butadiene and isoprene. Chem Biol Interact 135–136:65–80

    Article  PubMed  Google Scholar 

  • Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114

    Article  CAS  PubMed  Google Scholar 

  • Boelsterli UA (2007) Mechanistic toxicology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Boelsterli UA, Ho HK, Zhou S, Leow KY (2006) Bioactivation and hepatotoxicity of nitroaromatic drugs. Curr Drug Metab 7(7):715–727

    Article  CAS  PubMed  Google Scholar 

  • Bogdanffy MS, Taylor ML (1993) Kinetics of nasal carboxylesterase-mediated metabolism of vinyl acetate. Drug Metab Dispos 21:1107–1111

    CAS  PubMed  Google Scholar 

  • Bolton JL (2002) Quinoids, quinoid radicals, and phenoxyl radicals formed from estrogens and antiestrogens. Toxicology 177(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Boyd JA, Eling TE (1987) Prostaglandin H synthase-catalyzed metabolism and DNA binding of 2-naphthylamine. Cancer Res 47(15):4007–4014

    CAS  PubMed  Google Scholar 

  • Chandrasekara A, Shahidi F (2011) Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J Agric Food Chem 59:428–436

    Article  CAS  PubMed  Google Scholar 

  • Chen CH (2012) Activation and detoxification enzymes: functions and implications. Springer, New York

    Book  Google Scholar 

  • Dekant W, Vamvakas S (1993) Glutathione-dependent bioactivation of xenobiotics. Xenobiotica 23:873–887

    Article  CAS  PubMed  Google Scholar 

  • Dietz BM, Bolton JL (2011) Biological reactive intermediates (BRIs) formed from botanical dietary supplements. Chem Biol Interact 192:72–80

    Article  CAS  PubMed  Google Scholar 

  • Eaton DL, Gallagher EP (1994) Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol 34:135–172

    Article  CAS  PubMed  Google Scholar 

  • Furst SM, Uetrecht JP (1995) The effect of carbamazepine and its reactive metabolite, 9-acridine carboxaldehyde, on immune cell function in vitro. Int J Immunopharmacol 17(5):445–452

    Article  CAS  PubMed  Google Scholar 

  • Glatt H (2000) Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 129:141–170

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    Article  CAS  PubMed  Google Scholar 

  • Hinson JA, Forkert PG (1995) Phase II enzymes and bioactivation. Can J Physiol Pharmacol 73:1407–1413

    Article  CAS  PubMed  Google Scholar 

  • James LP, Capparelli EV, Simpson PM et al (2008) Acetaminophen-associated hepatic injury: evaluation of acetaminophen protein adducts in children and adolescents with acetaminophen overdose. Clin Pharmacol Ther 84:684–690

    Article  CAS  PubMed  Google Scholar 

  • Jinsmaa Y, Florang VR, Rees JN, Mexas LM, Eckert LL, Allen EM, Anderson DG, Doorn JA (2011) Dopamine-derived biological reactive intermediates and protein modifications: implications for Parkinson’s disease. Chem Biol Interact 192(1-2):118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson WW (2008) Many drugs and phytochemicals can be activated to biological reactive intermediates. Curr Drug Metab 9(4):344–351

    Article  CAS  PubMed  Google Scholar 

  • Kalgutkar AS, Dalvie DK, O’Donnell JP et al (2002) On the diversity of oxidative bioactivation reactions on nitrogen-containing xenobiotics. Curr Drug Metab 3:379–424

    Article  CAS  PubMed  Google Scholar 

  • Khojasteh SC, Hartley DP, Ford KA, Uppal H, Oishi S, Nelson SD (2012) Characterization of rat liver proteins adducted by reactive metabolites of menthofuran. Chem Res Toxicol 25(11):2301–2309

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Suzuki N, Laxmi YR et al (2004) Genotoxic mechanism of tamoxifen in developing endometrial cancer. Drug Metab Rev 36:199–218

    Article  CAS  PubMed  Google Scholar 

  • Khojasteh SC, Hartley DP, Ford KA, Uppal H, Oishi S, Nelson SD (2012) Characterization of rat liver proteins adducted by reactive metabolites of menthofuran. Chem Res Toxicol 25(11):2301–2309

    Article  CAS  PubMed  Google Scholar 

  • Koob M, Dekant W (1991) Bioactivation of xenobiotics by formation of toxic glutathione conjugates. Chem Biol Interact 77:107–136

    Article  CAS  PubMed  Google Scholar 

  • Korobkova EA, Nemeth J, Cadougan M, Venkatratnam A, Bassit M, Azar N (2012) Reactive metabolites of desipramine and clomipramine: the kinetics of formation and reactivity with DNA. Bioorg Med Chem 20(1):340–345

    Article  CAS  PubMed  Google Scholar 

  • Levi PE, Hodgson E (2008) Reactive metabolites and toxicity. In: Smart RC, Hodgson E (eds) Molecular and biochemical toxicology. Wiley, New York

    Google Scholar 

  • Mao J, Dai W, Zhang S, Sun L, Wang H, Gao Y, Wang J, Zhang F (2019) Quinone-thioether metabolites of hydroquinone play a dual role in promoting a vicious cycle of ROS generation: in vitro and in silico insights. Arch Toxicol 93(5):1297–1309

    Article  CAS  PubMed  Google Scholar 

  • McLemore TL, Litterst CL, Coudert BP et al (1990) Metabolic activation of 4-ipomeanol in human lung, primary pulmonary carcinomas, and established human pulmonary carcinoma cell lines. J Natl Cancer Inst 82:1420–1426

    Article  CAS  PubMed  Google Scholar 

  • Medower C, Wen L, Johnson WW (2008) Cytochrome P450 oxidation of the thiophene-containing anticancer drug 3-[(quinolin-4-ylmethyl)-amino]-thiophene-2-carboxylic acid (4-trifluoromethoxy- phenyl)-amide to an electrophilic intermediate. Chem Res Toxicol 21(8):1570–1577

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell JP, Dalvie DK, Kalgutkar AS, Obach RS (2003) Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen. Drug Metab Dispos 31(11):1369–1377

    Article  PubMed  Google Scholar 

  • Perlow RA, Kolbanovskii A, Hingerty BE et al (2002) DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J Mol Biol 321:29–47

    Article  CAS  PubMed  Google Scholar 

  • Phillips MB, Sullivan MM, Villalta PW, Peterson LA (2014) Covalent modification of cytochrome c by reactive metabolites of furan. Chem Res Toxicol 27(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Raucy JL, Kraner JC, Lasker JM (1993) Bioactivation of halogenated hydrocarbons by cytochrome P4502E1. Crit Rev Toxicol 23:1–20

    Article  CAS  PubMed  Google Scholar 

  • Reilly CA, Henion F, Bugni TS, Ethirajan M, Stockmann C, Pramanik KC, Srivastava SK, Yost GS (2013) Reactive intermediates produced from metabolism of the vanilloid ring of capsaicinoids by P450 enzymes. Chem Res Toxicol 26(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Ritter JK (2000) Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129:171–193

    Article  CAS  PubMed  Google Scholar 

  • Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21:257–276

    Article  CAS  PubMed  Google Scholar 

  • Smart RC, Hodgson E (2008) Molecular and biochemical toxicology. Wiley, New York

    Book  Google Scholar 

  • Smith BJ, Curtis JF, Eling TE (1991) Bioactivation of xenobiotics by prostaglandin H synthase. Chem Biol Interact 79:245–264

    Article  CAS  PubMed  Google Scholar 

  • Sridar C, D’Agostino J, Hollenberg PF (2012) Bioactivation of the cancer chemopreventive agent tamoxifen to quinone methides by cytochrome P4502B6 and identification of the modified residue on the apoprotein. Drug Metab Dispos 40(12):2280–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Stiborova M, Schmeiser HH, Frei E, Hodek P, Martinek V (2014) Enzymes oxidizing the azo dye 1- phenylazo-2-naphthol (Sudan I) and their contribution to its genotoxicity and carcinogenicity. Curr Drug Metab 15(8):829–840

    Article  CAS  PubMed  Google Scholar 

  • Thompson DC, Eling TE (1991) Reactive intermediates formed during the peroxidative oxidation of anisidine isomers. Chem Res Toxicol 4(4):474–481

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weems JM, Lamb JG, D’Agostino J, Ding X, Yost GS (2010) Potent mutagenicity of 3-methylindole requires pulmonary cytochrome P450-mediated bioactivation: a comparison to the prototype cigarette smoke mutagens B(a)P and NNK. Chem Res Toxicol 23(11):1682–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Koh HL, Gao Y, Gong ZY, Lee EJ (2004) Herbal bioactivation: the good, the bad and the ugly. Life Sci 74(8):935–968

    Article  CAS  PubMed  Google Scholar 

  • Zhou SF, Xue CC, Yu XQ, Wang G (2007) Metabolic activation of herbal and dietary constituents and its clinical and toxicological implications: an update. Curr Drug Metab 8(6):526–553

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, CH. (2020). Reactive Intermediates Generated from Bioactivation. In: Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-41679-9_9

Download citation

Publish with us

Policies and ethics