Skip to main content

Nanotechnology: A Potential Tool in Exploring Herbal Benefits

  • Chapter
  • First Online:
Functional Bionanomaterials

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology is a novel approach that involves materials and equipment with manipulative abilities on the physical and chemical properties of a substance at molecular levels. The nanoparticles, so-called “mesoporous,” introduce the gene and activate it in a precise and controlled manner without any toxic aftereffects. Polymeric nanoparticles, liposomes, proliposomes, solid lipid nanoparticles, and microemulsions are the precise nanoparticulate formulations which have a potential to deliver herbal medicines effectively. Herbal medicines have been widely used all over the world since prehistoric times and have been recognized by physicians for their better therapeutic value for having fewer adverse effects compared with modern medicines. The effectiveness of many species of medicinal plants depends on the supply of bioactive secondary metabolites. Most of these constituents of extracts, such as flavonoids, tannins, and terpenoids, are highly soluble in water but have low absorption, because they are unable to cross the lipid membranes of the cells, with bigger molecular size, resulting in loss of bioavailability and efficacy. To characterize the nanoparticles with a view to determine the physical and chemical toxicity profiles, several research studies are on their way to focus and explain the mechanism rationally aided with advanced technologies. Nanosized drug delivery systems of herbal drugs have a potential future for enhancing the activity and overcoming problems associated with plant medicines. The present chapter highlights several areas of this amazing world and focuses on the aspects of a promising fusion of nanotechnology and herbal wonders, converging into a futuristic wisdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B (2008) Biological activities of curcumin and its analogues (congeners) made by man. Biochem Pharmacol 76(11):1590–1611

    CAS  PubMed  Google Scholar 

  • Ansari SH, Islam F, Shameem M (2012) Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res 3(3):142–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anupam S, Krishan L, Handa SS (1992) Standardization: HPLC determination of vasicine in polyherbal formulations. Pharm Biol 30(3):205–208

    Google Scholar 

  • Barzaghi N, Crema F, Gatti G, Pifferi G, Perucca E (1990) Pharmacokinetic studies on Idb 1016, a silybin phosphatidylcholine complex in healthy human subjects. Eur J Drug Metab Pharmacokinet 15:333–338

    CAS  PubMed  Google Scholar 

  • Binit DK, Sunil K, Nayak C, Mehta BK (2010) Gas chromatography mass spectrometry (GC-MS) analysis of the hexane and benzene extracts of the Piper betel from India. J Med Plant Res 4(21):2252–2255

    Google Scholar 

  • Bombardelli E (1991) Phytosome: new cosmetic delivery system. Boll Chim Farm 130:431–438

    CAS  PubMed  Google Scholar 

  • Bombardelli E, Cristoni A, Morazzoni P (1994) Phytosomes in functional cosmetics. Fitoterapia 95:387–401

    Google Scholar 

  • Bonifacio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15

    PubMed  Google Scholar 

  • Chen Y, Lin X, Park H, Greever R (2009) Study of artemisin in nanocapsules as anticancer drug delivery systems. Nanomedicine 5:316–322

    CAS  PubMed  Google Scholar 

  • Chimezie A, Ibukun A, Teddy E, Francis O (2008) HPLC analysis of nicotinamide, pyridoxine, riboflavin and thiamin in some selected food products in Nigeria. Afr J Pharm Pharmacol 2(2):29–36

    Google Scholar 

  • Cott J (1995) NCDEU update. Natural product formulations available in Europe for psychotropic indications. Psychopharmacol Bull 31:745–751

    CAS  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20

    CAS  PubMed  Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:1–4

    Google Scholar 

  • Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet 42(5):419–436

    CAS  PubMed  Google Scholar 

  • Ganzera M (2008) Quality control of herbal medicines by capillary electrophoresis: potential, requirements and applications. Electrophoresis 29:3489–3503

    CAS  PubMed  Google Scholar 

  • Garg GP (2010) Nanotechnology in herbal medicines. Herbal tech industry (English monthly newspaper), Mar 2010

    Google Scholar 

  • Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med 56:307–311

    CAS  Google Scholar 

  • Geisse NA (2009) AFM and combined optical techniques. Mater Today 12(7–8):40–45

    CAS  Google Scholar 

  • Giacomazza D, Carlo MD (2012) Insulin as therapeutic agent against Alzheimer’s disease. Drugs 1:3

    Google Scholar 

  • Huang S, Chang WH (2009) Advantages of nanotechnology based Chinese herb drugs on biological activities. Curr Drug Metabol 10(8):905–913

    CAS  Google Scholar 

  • Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    PubMed  PubMed Central  Google Scholar 

  • Kakkar V, Modgill N, Kumar M (2016) Novel drug delivery systems for herbal antidepressants. In: Herbal medicine in depression. Springer, Cham

    Google Scholar 

  • Kamboj VP (2000) Herbal medicine. Curr Sci 78:35–39

    Google Scholar 

  • Karaman R (2012) The future of prodrugs designed by computational chemistry. Drug Des 1:1

    Google Scholar 

  • Kasthuri KT, Radha R, Jayshree N, Anoop A, Shanthi P (2010) Development of GC-MS for a polyherbal formulation-MEGNI. Int J Pharm Sci 2(2):81–83

    CAS  Google Scholar 

  • Kavita (2009) Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int J Green Nanotechnol 1(1):B39–B52

    Google Scholar 

  • Kidd P, Head KA (2005) Review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin phosphatidylcholine complex (Siliphos). Altern Med Rev 10:193–203

    PubMed  Google Scholar 

  • Kumari A, Kumar V, Yadav SK (2012) Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res 7:34–42

    CAS  Google Scholar 

  • Lang KM, Hite DA, Simmonds RW, McDermott R, Pappas DP, Martinis JM (2004) Conducting atomic force microscopy for nanoscale tunnel barrier characterization. Rev Sci Instrum 75:2726–2731

    CAS  Google Scholar 

  • Li DC, Zhong XK, Zeng ZP, Jiang JG, Li L, Zhao MM (2009) Application of targeted drug delivery system in Chinese medicine. J Control Release 138:103–112

    CAS  PubMed  Google Scholar 

  • Li SL, Lai SF, Song JZ, Qiao CF, Liu X, Zhou Y (2010a) Decocting-induced chemical transformations and global quality of Du–Shen–tang, the decoction of ginseng evaluated by UPLC–Q-TOF-MS/MS based chemical profiling approach. J Pharm Biomed Anal 53:946–957

    CAS  PubMed  Google Scholar 

  • Li SL, Song JZ, Qiao CF, Zhou Y, Qian KD, Xu HX (2010b) UPLC–PDA–TOFMS based chemical profiling approach to rapidly evaluate chemical consistency between traditional and dispensing granule decoctions of traditional medicine formulae. J Pharm Biomed Anal 52:468–478

    CAS  PubMed  Google Scholar 

  • Lin AH, Li HY, Liu YM (2007) Preparation and release characteristics of berberine chitosan nanoparticles in vitro. Chin Pharm 18:755–757

    CAS  Google Scholar 

  • Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6:193–210

    CAS  PubMed  Google Scholar 

  • Maiti K, Mukherjee K, Gantait A, Ahamed HN, Saha BP, Mukherjee PK (2005) Enhanced therapeutic benefit of quercetin-phospholipid complex in carbon tetrachloride induced acute liver injury in rats: a comparative study. Iran J Pharmacol Ther 4:84–90

    CAS  Google Scholar 

  • Makoto T, Dai K, Yonathan A, Kensaku T, Koji W (2009) Liposomes encapsulating Aloe vera leaf gel extract significantly enhance proliferation and collagen synthesis in human skin cell lines. J Oleo Sci 58(12):643–650

    Google Scholar 

  • Maureen R, Val V (2006) Nanoparticles: health effects pros and cons. Environ Health Perspect 114:12

    Google Scholar 

  • Mike LS, Edward KH (1999) LC/MS applications in drug development. Milestone Development Services, Pennington, NJ

    Google Scholar 

  • Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG (2008) Hydrophobically modified glycol chitosan nanoparticles encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 127:208–218

    CAS  PubMed  Google Scholar 

  • Moscarella S, Giusti A, Marra F, Marena C, Lampertico M, Relli P (1993) Therapeutic and antilipoperoxidant effects of silybin phosphatidylcholine complex in chronic liver disease: preliminary results. Curr Ther Res 53:98–102

    Google Scholar 

  • Mosihuzzaman M, Choudhary MI (2008) Protocols on safety, efficacy, standardization, and documentation of herbal medicine. Pure Appl Chem 80(10):2195–2230

    CAS  Google Scholar 

  • Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    CAS  PubMed  Google Scholar 

  • O’Shea TJ (1995) Capillary electrophoresis/electrochemistry. Curr Sci 14(1):18–23

    Google Scholar 

  • Paul S, Bhattacharyya SS, Boujedaini N, Khuda BAR (2011) Anticancer potentials of root extracts of Polygala senega and its PLGA nanoparticles-encapsulated form. Evid Based Complement Alternat Med 11:1–13

    Google Scholar 

  • Pawar HS, Bhangale BD (2015) Phytosome as a novel biomedicine: a microencapsulated drug delivery system. J Bioanal Biomed 7:1

    Google Scholar 

  • Pietta P, Mauri P, Rava A, Sabbatini G (1991) Application of micellar electrokinetic capillary chromatography to the determination of flavonoid drugs. J Chromatogr 549:367–373

    CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, http://dx.doi.org/10.1155/2014/963961

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Raja K, Selvaraj N, Krishnamoorthi E, Singh BK (2011) Effect of biologically synthesized nanoparticles with plant products and chemotherapeutics against biofilm of clinical isolates of Staphylococcus aureus and Candida tropicalis. IJPIs J Biotech Biother 1(3):1–10

    Google Scholar 

  • Rasheed AB, Reddy S, Roja C (2012) A review on standardisation of herbal formulation. Int J Phytotherapy 2(2):74–88

    Google Scholar 

  • Sahni JK, Baboota S, Ali J (2011) Promising role of nano-pharmaceuticals in drug delivery. Pharm Time 43:16–18

    Google Scholar 

  • Sapna S, Ravi TK (2007) Approaches towards development and promotion of herbal drugs. Pharmacogn Rev 1:180–184

    Google Scholar 

  • Saravanan J, Shajan A, Joshi NH, Varatharajan R, Valliappan K (2010) A simple and validated RP-HPLC method for the estimation of methylcobalamin in bulk and capsule dosage form. Int J Chem Pharm Sci 1(2):323–324

    Google Scholar 

  • Sarkar PK, Chaudhary AK (2010) Ayurvedic Bhasma: the most ancient application of nanomedicine. J Sci Ind Res 69:901–905

    CAS  Google Scholar 

  • Schnitzer JE (2001) Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue specific drug and gene delivery in vivo. Adv Drug Deliv Rev 49:265–280

    CAS  PubMed  Google Scholar 

  • Seitz U, Bonn G, Oefner P, Popp M (1991) Isotachophoretic analysis of flavonoids and phenolcarboxylic acids of relevance to phytopharmaceutical industry. J Chromatogr 559:499–504

    CAS  Google Scholar 

  • Sethiya NK, Trivedi A, Patel MB, Mishra SH (2010) Comparative pharmacognostical investigation on four ethanobotanicals traditionally used as Shankhpushpi in India. J Adv Pharm Tech Res 1:388–395

    Google Scholar 

  • Shaa YF, Shenb S, Duan GL (2004) Analysis of RhioxmaCurcumaeAeruginosae volatiles by solid-phase microextraction with gas chromatography-mass spectrometry. Z Naturforsch 59C:533–537

    Google Scholar 

  • Shakeri A, Sahebkar A (2016) Nanotechnology: a successful approach to improve oral bioavailability of phytochemicals. Recent Pat Drug Deliv Formul 10:4–6

    CAS  PubMed  Google Scholar 

  • Shanbhag DA, Khandagale NA (2011) Application of HPTLC in the standardization of a homoeopathic mother tincture of Syzygium jambolanum. J Chem Pharm Res 3(1):395–401

    CAS  Google Scholar 

  • Shen AQ, Morgan L, Barroso ML, Zhang X (2010) Tandem method development of LC-MS analysis of aminoglycoside drugs: challenges and solutions. Answ Pharm Questions Discip Ingenuity 5(2):567–569

    Google Scholar 

  • Singh DP, Govindarajan R, Rawat AKS (2007) High-performance liquid chromatography as a tool for the chemical standardisation of Triphala an ayurvedic formulation. Phytochem Anal 19(2):164–168

    Google Scholar 

  • Sombra LL, Gómez MR, Olsina R, Martínez LD, Silva MF (2005) Comparative study between capillary electrophoresis and high performance liquid chromatography in “guarana”-based phytopharmaceuticals. J Pharm Biomed Anal 36:989–994

    CAS  PubMed  Google Scholar 

  • Soni K, Naved T (2010) HPTLC – its applications in herbal drug industry. Pharma Rev 4:112–117

    Google Scholar 

  • Stolniket S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16:195–214

    Google Scholar 

  • Straus SE (2002) Herbal remedies. New Engl J Med 347:2046–2056

    Google Scholar 

  • Svicekova M, Havranek E, Novak V (1993) Determination of heavy metals in samples of herbal drugs using differential pulse polarography. J Pharm Biol 42(2):68–70

    CAS  Google Scholar 

  • Vaidya ADB, Devasagayam TPA (2007) Current status of herbal drugs in India: an overview. J Clin Biochem 41(1):1–11

    Google Scholar 

  • Wen HG, Lin SY, Jia L, Guo XK, Chen XG, Hu ZD (2005) Analysis of protoberberine alkaloids in several herbal drugs and related medicinal preparations by non-aqueous capillary electrophoresis. J Sep Sci 28(1):92–97

    PubMed  Google Scholar 

  • Yadav D, Suri S, Choudhary AA, Sikender M, Hemant B, N.M. (2011) Novel approach: herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int J Pharm Technol 3(3):3092–3116

    CAS  Google Scholar 

  • Yen FL, Wu TH, Tzeng CW, Lin LT, Lin CC (2010) Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agric Food Chem 58:7376–7382

    CAS  PubMed  Google Scholar 

  • Zafar R, Panwar R, Sagar BPS (2005) Herbal drug standardization: the. Indian Pharm 4(36):21–25

    Google Scholar 

  • Zhang Q, Ye M (2009) Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J Chromatogr 1216(11):1954–1969

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Sharangi, A.B. (2020). Nanotechnology: A Potential Tool in Exploring Herbal Benefits. In: Thangadurai, D., Sangeetha, J., Prasad, R. (eds) Functional Bionanomaterials. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-41464-1_2

Download citation

Publish with us

Policies and ethics