Skip to main content

Microgeographical Factors of Kala-azar Disease

  • Chapter
  • First Online:
Spatial Mapping and Modelling for Kala-azar Disease

Part of the book series: SpringerBriefs in Medical Earth Sciences ((BRIEFSMEEASC))

  • 143 Accesses

Abstract

Changing landscape and climate change can significantly affect local climate and environmental aspect more accurately. The spatial distributions of microgeography and habitat loss are the current challenges to humankind also influencing the vector ecology and vector breeding habitats. Microgeographical factors like temperature, relative humidity, rainfall, soil, peridomestic vegetation, topography, natural vegetation, deforestation, surface waterbody, land use/land cover, population density, housing characteristics, family size, illiteracy rate, unemployment, urbanization, population migration etc. played an important role in kala-azar transmission. This chapter demonstrates the role of remote sensing data to extract the geographical factors. This chapter also illustrates two examples by identifying some microgeographical factors that have shaped kala-azar propagation in the past and those that appear to be playing a part today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard-Hansen J, Nombela N, Alvar J (2010) Population movement: a key factor in the epidemiology of neglected tropical diseases. Tropical Med Int Health 15:1281–1288

    Article  Google Scholar 

  • Adhikari SR, Maskay NM, Sharma BP (2009) Paying for hospital-based care of kala-azar in Nepal: assessing catastrophic, impoverishment and economic consequences. Health Policy Plan 24:129–139

    Article  Google Scholar 

  • Adhikari SR, Supakankunti S, Khan MM (2010) Kala-azar in Nepal: estimating the effects of socioeconomic factors on disease incidence. Kathmandu Univ Med J 8:73–79

    Article  Google Scholar 

  • Ahammed A, Yusuf A, Feroz S, Selim S, Bhattacharyya B, Ahammed I, Rahman R (2016) Household and environmental risk factors for Kala-azar: a case-control study in Tertiary Care Hospital of Bangladesh. J Sci Found 14(2):56–61

    Article  Google Scholar 

  • Albuquerque PLMM, da Silva Júnior GB, Freire CCF, de Castro Oliveira SB, Almeida DM, da Silva HF, do Socorro Cavalcante M, de Queiroz Sousa A (2009) Urbanization of visceral leishmaniasis (kala-azar) in Fortaleza, Ceará, Brazil. Rev Panam Salud Publica/Pan Am J Public Health 26(4):330–333

    Article  Google Scholar 

  • Aversi-Ferreira RAGMF, Galvão JD, da Silva SF, Cavalcante GF, da Silva EV, Bhatia-Dey N, Aversi-Ferreira TA (2015) Geographical and environmental variables of leishmaniasis transmission. INTECH:105–123. https://doi.org/10.5772/57546

  • Badaró R, Jones TC, Cerf BJ, Sampaio D, Carvalho EM, Rocha H, Teixeira R, Johnson WD Jr (1986) A perspective study of Visceral Leishmaniasis in an endemic area of Brazil. J Infect Dis 154(4):639–649

    Article  Google Scholar 

  • Bavia ME, Carneiro DD, Gurgel Hda C, Madureira Filho C, Barbosa MG (2005) Remote sensing and geographic information systems and risk of American visceral leishmaniasis in Bahia, Brazil. Parassitologia (Rome) 47:165–169

    Google Scholar 

  • Bern C, Hightower AW, Chowdhury R, Ali M, Amann J, Wagatsuma Y, Haque R, Kurkjian K, Vaz LE, Begum M, Akter T, Cetre-Sossah CB, Ahluwalia IB, Dotson E, Evan Secor W, Breiman RF, Maguire JH (2005) Risk factors for Kala-azar in Bangladesh. Emerg Infect Dis 11(5):655–662

    Article  Google Scholar 

  • Bern C, Courtenay O, Alvar J (2010) Of cattle, sand flies and men: a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination. PLoS Negl Trop Dis 4:e599

    Article  Google Scholar 

  • Bhunia GS (2014) An appraisal of environmental determinants of the disease visceral leishmaniasis (Kala-azar) using remote sensing and GIS techniques: case studies of Vaishali and Muzaffarpur districts, Bihar. PhD thesis, Submitted to the Department of Geography, University of Calcutta, Kolkata

    Google Scholar 

  • Bhunia GS, Kesari S, Jeyaram A, Kumar V, Das P (2010a) Influence of topography on the endemicity of Kala-azar: a study based on remote sensing and geographical information system. Geospat Health 4(2):155–165

    Article  Google Scholar 

  • Bhunia GS, Kumar V, Kumar AJ, Das P, Kesari S (2010b) The use of remote sensing in the identification of the eco-environmental factors associated with the risk of human visceral leishmaniasis (kala-azar) on the Gangetic plain, in north-eastern India. Ann Trop Med Parasitol 104(1):35–53

    Article  Google Scholar 

  • Bhunia GS, Kesari S, Chatterjee N, Pal DK, Kumar V, Ranjan A, Das P (2011a) Incidence of visceral leishmaniasis in the Vaishali district of Bihar, India: spatial patterns and role of inland surface water bodies. Geospat Health 5:205–215

    Article  Google Scholar 

  • Bhunia GS, Dikhit MR, Kesari S, Sahoo GC, Das P (2011b) Role of remote sensing, geographical information system (GIS) and bioinformatics in kala-azar epidemiology. J Biomed Res 25(6):373–384. https://doi.org/10.1016/S1674-8301(11)60050-X

    Article  Google Scholar 

  • Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2012a) Localization of kala-azar in the endemic region of Bihar, India based on land use/land cover assessment at different scales. Geospat Health 6(2):177–193

    Article  Google Scholar 

  • Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2012b) Telehealth: a perspective approach for visceral leishmaniasis (kala-azar) control in India. Pathog Glob Health 106(3):1–9

    Article  Google Scholar 

  • Bhunia GS, Chatterjee N, Kumar V, Siddiqui NA, Mandal R, Das P, Kesari S (2012c) Delimitation of kala-azar risk areas in the district of Vaishali in Bihar (India) using a geo-environmental approach. Mem Inst Oswaldo Cruz 107(5):609–620

    Article  Google Scholar 

  • Colacicco-Mayhugh MG, Masuoka PM, Grieco JP (2010) Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: Psychodidae) in the Middle East. Int J Health Geogr 9:1. https://doi.org/10.1186/1476-072X-9-2

    Article  Google Scholar 

  • Costa CH, Werneck GL, Rodriques L Jr et al (2005) Household structure and urban services: neglected targets in the control of visceral leishmaniasis. Ann Trop Med Parasitol 99:229–236

    Article  Google Scholar 

  • Cross ER, Newcomb WW, Tucker CJ (1996) Use of weather data and remote sensing to predict the seasonal distribution of Phlebotomus papatasi in southwestern Asia. Am J Trop Med Hyg 54:530–536

    Article  Google Scholar 

  • Das P, Samuels S, Desjeux P, Mittal A, Topno R, Siddiqui NA, Sur D, Pandey A, Sarnoff R (2010) Annual incidence of visceral leishmaniasis in an endemic area of Bihar, India. Tropical Med Int Health 15(Suppl 2):4–11

    Article  Google Scholar 

  • Desjeux P (1996) Leishmaniasis. Public health aspects and control. Clin Dermatol 14:417–423

    Article  Google Scholar 

  • Desjeux P (2001) The increase risk for leishmaniasis worldwide. Trans Soc Trop Med Hyg 95:239–241

    Article  Google Scholar 

  • Dhiman RC, Dinesh DS (1992) An experimental study to find out the source of fructose to sandflies. Indian J Parasitol 16:159–160

    Google Scholar 

  • Dinesh DS, Dhima RC (1991) Plant source of fructose to sandflies, particularly Phlebotomus argentipes in nature. J Commun Disord 23:160–161

    Google Scholar 

  • Elnaiem DA, Hassan HK, Ward RD (2002) Associations of Phlebotomus orientalis and other sandflies with vegetation types in the eastern Sudan focus of kala-azar. Med Vet Entomol 13(2):198–203

    Article  Google Scholar 

  • Elnaiem DA, Schorscher J, Bendall A, Obsomer V, Osman ME, Mekkawi AM, Connor SJ, Ashford RW, Thomson MC (2003) Risk mapping of visceral leishmaniasis: the role of local variation in rainfall and altitude on the presence and incidence of kala-azar in eastern Sudan. Am J Trop Med Hyg 68(1):10–17

    Article  Google Scholar 

  • Feliciangeli MD, Delgado O, Suarez B, Bravo A (2006) Leishmania and sand flies: proximity to woodland as a risk factor for infection in a rural focus of visceral leishmaniasis in west central Venezuela. Tropical Med Int Health 11:1785–1791

    Article  Google Scholar 

  • Galati EAB, Nunes VLB, Cristaldo G, Rocha HC (2003) Aspectos do comportamento da fauna flebotomínea (Diptera:Psychodidae) em foco de leishmaniose visceral e tegumentar na Serra da Bodoquena e área adjacente, Estado de Mato Grosso do Sul, Brasil. Rev Pat Trop 32:235–261

    Google Scholar 

  • Ghosh KN, Bhattacharya A (1989) Laboratory colonization of Phlebotomus argentipes (Diptera: Psychodidae). Insect Sci Appl 10:551–555

    Google Scholar 

  • Gibson G, Torr SJ (1999) Visual and olfactory responses of haematophagous Diptera to host stimuli. Med Vet Entomol 13:2–23

    Article  Google Scholar 

  • Hertzman C (1994) The lifelong impact of childhood experience: a population health perspective. Daedalus 123(4):167–180

    Google Scholar 

  • Kesari S, Bhunia GS, Kumar V, Jeyaram A, Ranjan A, Das P (2011) A comparative evaluation of endemic and non-endemic region of visceral leishmaniasis (Kala-azar) in India with ground survey and space technology. Mem Inst Oswaldo Cruz, Rio de Janeiro 106(5):515–523

    Article  Google Scholar 

  • Killick-Kendrick R (1987) Investigation of Phlebotomine sand flies. In: Lumsden WHR, Evans DA (eds) Biology of the Kinetoplastids, vol 2. Academic Press, London

    Google Scholar 

  • Kumar V, Kesari S, Sinha NK, Palit A, Ranjan A, Kishore K (1995) Field trial of an ecological approach for the control of Phlebotomus argentipes using mud and lime plaster. Indian J Med Res 101:154–156

    Google Scholar 

  • Lainson R, Rangel EF (2005) Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil – a review. Mem Inst Oswaldo Cruz, Rio de Janeiro 100(8):811–827

    Article  Google Scholar 

  • Lewis DJ (1971) Plebotomid Sandflies. Bull World Health Organ 44(4):535–551

    Google Scholar 

  • Lysenko AJ (1971) Distribution of leishmaniasis in the Old World. Bull WHO 44:515–520

    Google Scholar 

  • Mandal R, Das P, Kumar V, Kesari S (2017) Spatial distribution of Phlebotomus argentipes (Diptera: Psychodidae) in eastern India, a case study evaluating multi-spatial resolution remotely sensed environmental evidence and microclimatic data. J Med Entomol. https://doi.org/10.1093/jme/tjw232

  • Marzochi MC, Fagundes A, Andrade MV, Souza MB, Madeira MF, Mouta-Confort E, Schubach AO, Marzochi KBF (2009) Visceral leishmaniasis in Rio de Janeiro, Brazil: eco-epidemiological aspects and control. Rev Soc Bras Med Trop 42:570–580

    Article  Google Scholar 

  • Meheus F, Boelaert M, Baltussen R, Sundar S (2006) Costs of patient management of visceral leishmaniasis in Muzaffarpur, Bihar, India. Trop Med Int Health 11:1715–1724

    Article  Google Scholar 

  • Mendes WS, Silva AA, Trovão JR, Silva AR, Costa JM (2002) Expansão espacial da leishmaniose visceral americana em São Luis, Maranhão, Brasil. Rev Soc Bras Med Trop 35:227–231

    Article  Google Scholar 

  • Mott KE, Nuttall I, Desjeux P, Cattand P (1995) New geographical approaches to control of some parasitic zoonoses. Bull World Health Organ 73(2):247–257

    Google Scholar 

  • Müller GC, Kravchenko VD, Rybalov L, Schlein Y (2011) Characteristics of resting and breeding habitats of adult sand flies in the Judean Desert. J Vector Ecol 36:195–205

    Article  Google Scholar 

  • Nieto P, Malone JB, Bavia ME (2006) Ecological niche modeling for visceral leishmaniasis in the state of Bahia, Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. Geospat Health 1(1):115–126

    Article  Google Scholar 

  • Pascual Martı’nez F, Picado A, Roddy P, Palma P (2012) Low castes have poor access to visceral leishmaniasis treatment in Bihar, India. Trop Med Int Health 17(5):666–673

    Article  Google Scholar 

  • Prince SD (1999) What practical information about land-surface function can be determined by remote sensing? Where do we stand? In: Tenhunen LD, Kabat P (eds) Integrating hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes. Wiley, Chichester, pp 39–60

    Google Scholar 

  • Ranjan A, Sur D, Singh VP, Siddique NA, Manna B, Lal CS, Sinha PK, Kishore K, Bhattacharya SK (2005) Risk factors for Indian kala-azar. Am J Trop Med Hyg 73(1):74–78

    Article  Google Scholar 

  • Rebelo JMM, Oliveira ST, Silva FS, Barros VLL, Costa JML (2001) Sandflies (Diptera: psychodidae) of the Amazonia of Maranhao v. seasonal occurrence in ancient colonization area and endemic for cutaneous leismaniasis. Rev Bras Biol 1(61):107–115

    Article  Google Scholar 

  • Reithinger R, Mohsen M, Leslie T (2010) Risk factors for anthroponotic cutaneous leishmaniasis at the household level in Kabul, Afghanistan. PLoS Negl Trop Dis 4(3):e639. https://doi.org/10.1371/journal.-pntd.0000639

    Article  Google Scholar 

  • Ross CE, Wu C (1995) The links between education and health. Am Sociol Rev 60:719–745

    Article  Google Scholar 

  • Rotureau B, Joubert M, Clyti E, Djossou F, Carme B (2006) Leishmaniasis among gold miners, French Guiana. Emerg Infect Dis 12(7):1169–1170

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancements and retrogradation (greenwave effect) of nature vegetation. NASA/GSFC Final Report. NASA, Greenbelt

    Google Scholar 

  • Rutledge LC, Ellenwood DA (1975) Production of Phlebotomine sandflies on the open forest floor in Panama: the species complement. Environ Entomol:471–477

    Google Scholar 

  • Ryan JR, Mbui J, Rashid JR, Wasunna MK, Kirigi G, Magiri C, Kinoti D, Ngumbi PM, Martin SK, Odera SO, Hochberg LP, Bautista CT, Chan AS (2006) Spatial clustering and epidemiological aspects of visceral leishmaniasis in two endemic villages, Baringo District, Kenya. Am J Trop Med Hyg 74(2):308–317

    Article  Google Scholar 

  • Schlein Y, Jacobson RL (1999) Sugar meals and longevity of the sand fly Phlebotomus papatasi in an arid focus of Leishmania major in the Jordan Valley. Med Vet Entomol 13(1):65–71

    Article  Google Scholar 

  • Schlerf M, Atzberger C, Hill J (2005) Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ 95:177–194

    Article  Google Scholar 

  • Sharma U, Singh S (2008) Insect vectors of Leishmania: distribution, physiology and their control. J Vector Borne Dis 45:255–272

    Google Scholar 

  • Sharma AD, Bern C, Varghese B, Chowdhury R, Haque R, Ali M, Amann J, Ahluwalia IB, Wagatsuma Y, Breiman RF, Maguire JH, McFarland DA (2006) The economic impact of visceral leishmaniasis on households in Bangladesh. Trop Med Int Health 11:757–764

    Article  Google Scholar 

  • Singh SP, Reddy DC, Rai M, Sundar S (2006) Serious underreporting of visceral Leishmaniasis through passive case reporting in Bihar, India. Trop Med Int Health 11(6):899–905

    Article  Google Scholar 

  • Singh A, Roy SP, Kumar R, Nath A (2008a) Temperature and humidity play a crucial role in the development of P. argentipes. J Ecophysiol Occup Health 8(1 & 2):47–52

    Google Scholar 

  • Singh R, Lal S, Saxena VK (2008b) Breeding ecology of visceral leishmaniasis vector sandfly in Bihar state of India. Acta Trop 107:117–120

    Article  Google Scholar 

  • Sivagnaname N, Amalraj DD (1997) Breeding habitats of vector sand flies and their control in India. J Commun Disord 29(2):153–159

    Google Scholar 

  • Sudhakar S, Srinivas T, Palit A, Kar SK, Battacharya SK (2006) Mapping of risk prone areas of kala-azar (Visceral leishmaniasis) in parts of Bihar state, India: an RS and GIS approach. J Vect Borne Dis 43:115–122

    Google Scholar 

  • Sundar S, Arora R, Singh SP, Boelaert M, Varghese B (2010) Household cost-of-illness of visceral leishmaniasis in Bihar, India. Trop Med Int Health 15(Suppl. 2):50–54

    Article  Google Scholar 

  • Thakur CP (2000) Socio-economies of visceral leishmaniasis in Bihar (India). Trans R Soc Trop Med Hyg 94:156–157

    Article  Google Scholar 

  • Thakur CP, Thakur S, Narayan S, Sinha A (2008) Comparison of treatment regimens of kala-azar based on culture & sensitivity of amastigotes to sodium antimony gluconate. Indian J Med Res 127:582–588

    Google Scholar 

  • Thompson RA, Maguire JH, de Oliveria Lima JW, Scholl DT, Braud DH (2004) Association of remotely sensed environmental indices with visceral leishmaniasis in Brazil. GISVET’04

    Google Scholar 

  • Thomson MC, Elnaiem DA, Ashford RW, Connor SJ (1999) Towards a Kala-azar risk map for Sudan: mapping the potential distribution of P. orientalis using digital data of environmental variables. Trop Med Int Health 4(2):105–113

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Viergever R, Perehudoff K, Esselink M, Sienkiewicz D, Panday BM (2005) Leishmaniasis: a neglected disease. The Dutch secretary of defense reports to parliament. Available at: http://www.globalmedicine.nl/index.php/leishmaniasis

  • Wang Q, Adiku S, Tenhunen J, Granier A (2005) On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens Environ 94(2):465–474

    Article  Google Scholar 

  • World Health Organization (WHO) (2001) WHO recommended strategies for the prevention and control of communicable diseases. Department of Communicable Disease Control, Prevention and Eradication. WHO/CDS/CPE/SMT/2001.13. Available at: http://whqlibdoc.who.int/hq/2001 /WHO_CDS_CPE_SMT_2001.13.pdf

  • World Health Organization (WHO) (2002) Urbanization: an increasing risk factor for leishmaniasis. Wkly Epidemiol Rec 77:365–372

    Google Scholar 

  • World Health Organization (WHO) (2010) Control of the leishmaniasis. Report of a meeting of the WHO Expert Committee on the control of Leishmaniasis, Geneva, 22–26 March, 2010. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhunia, G.S., Shit, P.K. (2020). Microgeographical Factors of Kala-azar Disease. In: Spatial Mapping and Modelling for Kala-azar Disease. SpringerBriefs in Medical Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-41227-2_3

Download citation

Publish with us

Policies and ethics