Skip to main content

A Performance Evaluation of Several Artificial Neural Networks for Mapping Speech Spectrum Parameters

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2019)

Abstract

In this work, we compare different neural network architectures, for the task of mapping spectral coefficients of noisy speech signals with those corresponding to natural speech. In previous works on the subject, fully-connected multilayer perception (MLP) networks and recurrent neural networks (LSTM & BLSTM) have been used. Several references report some initial trial and error processes to determine which architecture to use. Finding the best network type and size is of great importance due to the considerable training time required by some models of recurrent networks. In our work, we conducted extensive tests training more than five hundred networks, with several architectures to determine which cases present significant differences. The results show that for this application of neural networks, the architectures with more layers or the greater number of neurons are not the most convenient, both for the time required in their training and for the adjustment achieved. These results depend on the complexity of the task (the signal-to-noise ratio or SNR) and the amount of data available. This exploration can guide the most efficient use of these types of neural networks in future mapping applications, and can help to optimize resources in future studies by reducing computational time and complexity.

Supported by the University of Costa Rica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Hamid, O., Mohamed, A.R., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4277–4280. IEEE (2012)

    Google Scholar 

  2. Barron, A.R.: Approximation and estimation bounds for artificial neural networks. Mach. Learn. 14(1), 115–133 (1994)

    MATH  Google Scholar 

  3. Coto-Jiménez, M.: Robustness of LSTM neural networks for the enhancement of spectral parameters in noisy speech signals. In: Batyrshin, I., Martínez-Villaseñor, M.L., Ponce Espinosa, H.E. (eds.) MICAI 2018. LNCS (LNAI), vol. 11289, pp. 227–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04497-8_19

    Chapter  Google Scholar 

  4. Coto-Jiménez, M.: Improving post-filtering of artificial speech using pre-trained LSTM neural networks. Biomimetics 4(2), 39 (2019)

    Article  Google Scholar 

  5. Coto-Jiménez, M., Goddard-Close, J.: LSTM deep neural networks postfiltering for improving the quality of synthetic voices. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ayala-Ramírez, V., Olvera-López, J.A., Jiang, X. (eds.) MCPR 2016. LNCS, vol. 9703, pp. 280–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39393-3_28

    Chapter  Google Scholar 

  6. Coto-Jiménez, M., Goddard-Close, J., Martínez-Licona, F.: Improving automatic speech recognition containing additive noise using deep denoising autoencoders of LSTM networks. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS (LNAI), vol. 9811, pp. 354–361. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43958-7_42

    Chapter  Google Scholar 

  7. Fan, Y., Qian, Y., Xie, F.L., Soong, F.K.: TTS synthesis with bidirectional LSTM based recurrent neural networks. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  8. Feng, X., Zhang, Y., Glass, J.: Speech feature denoising and dereverberation via deep autoencoders for noisy reverberant speech recognition. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1759–1763. IEEE (2014)

    Google Scholar 

  9. Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks. Neural Netw. 2(3), 183–192 (1989)

    Article  Google Scholar 

  10. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 3(Aug), 115–143 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Heidelberg (2005). https://doi.org/10.1007/11550907_126

    Chapter  Google Scholar 

  12. Graves, A., Jaitly, N., Mohamed, A.R.: Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 273–278. IEEE (2013)

    Google Scholar 

  13. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  14. Huang, J., Kingsbury, B.: Audio-visual deep learning for noise robust speech recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7596–7599. IEEE (2013)

    Google Scholar 

  15. Ishii, T., Komiyama, H., Shinozaki, T., Horiuchi, Y., Kuroiwa, S.: Reverberant speech recognition based on denoising autoencoder. In: Interspeech, pp. 3512–3516 (2013)

    Google Scholar 

  16. Kominek, J., Black, A.W.: The CMU arctic speech databases. In: Fifth ISCA Workshop on Speech Synthesis (2004)

    Google Scholar 

  17. Kumar, A., Florencio, D.: Speech enhancement in multiple-noise conditions using deep neural networks. arXiv preprint arXiv:1605.02427 (2016)

  18. Liang, S., Srikant, R.: Why deep neural networks for function approximation? arXiv preprint arXiv:1610.04161 (2016)

  19. Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks: a view from the width. In: Advances in Neural Information Processing Systems, pp. 6231–6239 (2017)

    Google Scholar 

  20. Ma, X., Zhang, J., Du, B., Ding, C., Sun, L.: Parallel architecture ofconvolutional bi-directional LSTM neural networks for network-wide metroridership prediction. IEEE Trans. Intell. Transp. Syst. 20, 2278–2288 (2018)

    Article  Google Scholar 

  21. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. In: ICGA, vol. 89, pp. 379–384 (1989)

    Google Scholar 

  22. Ray, A., Rajeswar, S., Chaudhury, S.: Text recognition using deep BLSTM networks. In: 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR), pp. 1–6. IEEE (2015)

    Google Scholar 

  23. Seltzer, M.L., Yu, D., Wang, Y.: An investigation of deep neural networks for noise robust speech recognition. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7398–7402. IEEE (2013)

    Google Scholar 

  24. Vincent, E., Watanabe, S., Nugraha, A.A., Barker, J., Marxer, R.: An analysis of environment, microphone and data simulation mismatches in robust speech recognition. Comput. Speech Lang. 46, 535–557 (2017)

    Article  Google Scholar 

  25. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Weninger, F., Geiger, J., Wöllmer, M., Schuller, B., Rigoll, G.: Feature enhancement by deep LSTM networks for ASR in reverberant multisource environments. Comput. Speech Lang. 28(4), 888–902 (2014)

    Article  Google Scholar 

  27. Weninger, F., Watanabe, S., Tachioka, Y., Schuller, B.: Deep recurrent de-noising auto-encoder and blind de-reverberation for reverberated speech recognition. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4623–4627. IEEE (2014)

    Google Scholar 

  28. Zen, H., Sak, H.: Unidirectional long short-term memory recurrent neural network with recurrent output layer for low-latency speech synthesis. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4470–4474. IEEE (2015)

    Google Scholar 

  29. Zhao, Y., Wang, Z.Q., Wang, D.: Two-stage deep learning for noisy-reverberant speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 27(1), 53–62 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Costa Rica (UCR), Project No. 322-B9-105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Coto-Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yeom-Song, V., Zeledón-Córdoba, M., Coto-Jiménez, M. (2020). A Performance Evaluation of Several Artificial Neural Networks for Mapping Speech Spectrum Parameters. In: Crespo-Mariño, J., Meneses-Rojas, E. (eds) High Performance Computing. CARLA 2019. Communications in Computer and Information Science, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-030-41005-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41005-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41004-9

  • Online ISBN: 978-3-030-41005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics