Skip to main content

Macroalgae and Cyanobacteria

  • Chapter
  • First Online:
Islands in the Sand

Abstract

Macroalgae (fleshy and calcareous seaweeds), along with sponges, stony and soft corals, hydroids, bryozoans, and tube-building polychaete worms are the critical building blocks of biological habitats of nearshore hardbottom reefs of east Florida. Physical characteristics of these foundation species enhance available shelter for fish and invertebrates, stabilize substrate, and alter water flow and sedimentation impacts. The structure of macroalgal assemblages is much like that of terrestrial forests with “canopy” and “understory” species that provide micro-habitat between layers, cycle detrital material, as well as form the energetic basis of the marine trophic food web. Turf and upright macroalgae provide refuge and foraging habitat that support conspicuous and cryptic organisms such as amphipods, sea urchins, juvenile lobster, crabs, shrimps, polychaetes, and juvenile fishes. Further, macroalgae, especially turf species, form the primary diet of juvenile green turtles as well as diverse fish species that consume micro- or macroalgae at different life stages or throughout their life. Data compiled from multiple studies revealed that over 300 macroalgae and cyanobacteria taxa exist on Florida’s east coast nearshore reefs. This is likely a conservative value. One general observation is that macroalgae biomass on nearshore reefs of east Florida appears comparatively higher near the biogeographic transition zone of warm-temperate and subtropical waters. This and other distribution patterns may be the result of latitudinal differences in nutrients (a function in part of the proximity of oligotrophic waters of the Florida Current), wave dynamics, and/or differences in fish/invertebrate grazing communities. The latter explanation may be further supported by the relatively higher composition of physically- and chemically-defended macroalgae present in southeast Florida.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airoldi L (1998) Roles of disturbance, sediment stress, and substratum retention on spatial dominance in algal turf. Ecology 79:2759–2770

    Article  Google Scholar 

  • Airoldi L (2001) Distribution and morphological variation of low-shore algal turfs. Mar Biol 138:1233–1239. https://doi.org/10.1007/s002270100546

    Article  Google Scholar 

  • Arthur KE, Balazs GH (2008) A comparison of immature green turtles (Chelonia mydas) diets among seven sites in the main Hawaiian islands. Pac Sci 62:205–217. https://doi.org/10.2984/1534-6188(2008)62[205:acoigt]2.0.co;2

    Article  Google Scholar 

  • Banks KW, Riegl BM, Richards VP, et al (2008) The reef tract of continental southeast Florida (Miami-Dade, Broward and Palm Beach counties, USA). In: Riegl BM, Dodge RE (eds) Coral Reefs of the USA. Springer Science, London, p 175–220

    Google Scholar 

  • Bellgrove A, Clayton MN, Quinn GP (2004) An integrated study of the temporal and spatial variation in the supply of propagules, recruitment and assemblages of intertidal macroalgae on a wave-exposed rocky coast, Victoria, Australia. J Exp Mar Biol Ecol 310:207–225. https://doi.org/10.1016/j.jembe.2004.04.011

    Article  Google Scholar 

  • Bertelsen RD, Butler MJ, Herrnkind WF, Hunt JH (2009) Regional characterisation of hard-bottom nursery habitat for juvenile Caribbean spiny lobster (Panulirus argus) using rapid assessment techniques. N Z J Mar Freshw Res 43:299–312. https://doi.org/10.1080/00288330909510002

    Article  Google Scholar 

  • Bjorndal KA (1980) Nutrition and grazing behavior of the green turtle Chelonia mydas. Mar Biol 56:147–154. https://doi.org/10.1007/BF00397131

    Article  CAS  Google Scholar 

  • Bobadilla M, Santelices B (2005) Variations in the dispersal curves of macroalgal propagules from a source. J Exp Mar Biol Ecol 327:47–57. https://doi.org/10.1016/j.jembe.2005.06.006

    Article  Google Scholar 

  • Brawley SH, Johnson LE (1992) Gametogenesis, gametes and zygotes: an ecological perspective on sexual reproduction in the algae. Br Phycol J 27:233–252. https://doi.org/10.1080/00071619200650241

    Article  Google Scholar 

  • Bruno JF, Bertness MD (2001) Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, p 201–218

    Google Scholar 

  • Butler MJ, Herrnkind WF, Hunt JH (1997) Factors affecting the recruitment of juvenile Caribbean spiny lobster dwelling in macroalgae. Bull Mar Sci 61:3–19

    Google Scholar 

  • Carpenter RC (1985) Sea urchin mass-mortality: effects on reef algal abundance, species composition, and metabolism and other coral reef herbivores. Proc Natl Acad Sci USA 85:53–60

    Google Scholar 

  • Carr MH, Neigel JE, Estes JA, et al (2003) Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves. Ecol Appl 13:s900s107

    Google Scholar 

  • Clements KD, German DP, Piché J, et al (2017) Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc 120:729–751. https://doi.org/10.1111/bij.12914

    Article  Google Scholar 

  • Connell JH, Slatyer R (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Continental Shelf Associates, Inc. (1997) Monitoring of nearshore hard bottom habitats south of Fort Pierce Harbor. Report prepared for Jacksonville District, Army Corps of Engineers. Jacksonville, p 15

    Google Scholar 

  • Continental Shelf Associates, Inc. (2005a) Results of epibiotic surveys of nearshore rock outcrops in the Mid Reach Project Area in Brevard County, Florida. Prepared for Olsen Associates, Inc. Jacksvonille, p 15

    Google Scholar 

  • Continental Shelf Associates, Inc. (2005b) Nearshore artificial reef monitoring. Report to Palm Beach County Department of Environmental Resources Management. West Palm Beach, p 37+ app

    Google Scholar 

  • Collier C, Ruzicka R, Banks K, et al (2008) The state of coral reef ecosystems of southeast Florida. In: The state of coral reef ecosystems of the United States and Pacific freely associated states: 2008. NOAA, Miami, p 131–159

    Google Scholar 

  • Collado-Vides L (2002) Colonal architecture in marine macroalgae: ecological and evolutionary perspectives. Evol Ecol 15:531–545

    Article  Google Scholar 

  • Coutinho R, Seeliger U (1986) Seasonal occurrence and growth of benthic algae in the Patos Lagoon Estuary, Brazil. Estuar Coast Shelf Sci 23:889–900

    Google Scholar 

  • Cowen RK, Lwiza KMM, Sponaugle S, et al (2000) Connectivity of marine populations: open or closed? Science 287:857–859

    Article  CAS  PubMed  Google Scholar 

  • CP&E (Coastal Planning & Engineering, Inc.) (2006) Second annual biological monitoring report of the mitigative artificial reefs, 24 months post-construction of the mitigation reefs. Report to Broward County. Ft. Lauderdale, p 141

    Google Scholar 

  • Cronin G, Paul VJ, Hay ME, Fenical W (1997) Are tropical herbivores more resistant than temperate herbivores to seaweed chemical defenses? Diterpenoid metabolites from Dictyota acutiloba as feeding deterrents for tropical versus temperate fishes and urchins. J Chem Ecol 23:289–302. https://doi.org/10.1023/B:JOEC.0000006360.36833.13

    Article  CAS  Google Scholar 

  • CSA Ocean Sciences Inc. (2014) Mitigating the functions of nearshore hardbottom in east Florida: field comparisons of natural and artificial reef structures. Report to Florida Dept. of Envir. Protection, Bureau of Beaches and Coastal Systems. Tallahassee, p 93+apps

    Google Scholar 

  • Cummings SL (1990) Colonization of a nearshore artificial reef at Boca Raton (Palm Beach County), Florida. Master Thesis. Florida Atlantic University 

    Google Scholar 

  • Cummings SL (1994) Colonization of a nearshore artificial reef at Boca Raton (Palm Beach County), Florida. Bull Mar Sci 55:1193–1215

    Google Scholar 

  • da Gama BAP, de Santos RP, Pereira RC (2008) The effect of epibionts on the susceptibility of the red seaweed Cryptonemia seminervis to herbivory and fouling. Biofouling 24:209–218. https://doi.org/10.1080/08927010802041253

    Article  PubMed  Google Scholar 

  • Darcy G (1985) Synopsis of biological data on the spottail pinfish, Diplodus holbrooki (Pisces: Sparidae). NOAA technical report. NMFS 19. Seattle, p 1–11

    Google Scholar 

  • Dawes CJ (1998) Marine botany, 2nd edn. Wiley, New York

    Google Scholar 

  • de Guimaraens MA, Coutinho R (2000) Temporal and spatial variation of Ulva spp. and water properties in the Cabo Frio upwelling region of Brazil. Aquat Bot 66:101–114. https://doi.org/10.1016/S0304-3770(99)00070-4

    Article  Google Scholar 

  • Denny M, Mach K, Tepler S, Martone P (2013) Indefatigable: an erect coralline alga is highly resistant to fatigue. J Exp Biol 216:3772–3780. https://doi.org/10.1242/jeb.091264

    Article  PubMed  Google Scholar 

  • Dethier MN, McDonald K, Strathmann RR (2003) Colonization and connectivity of habitat patches for coastal marine species distant from source populations. Conserv Biol 17:1024–1035. https://doi.org/10.1046/j.1523-1739.2003.01606.x

    Article  Google Scholar 

  • Deysher L, Norton TA (1981) Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 56:179–195

    Article  Google Scholar 

  • Diaz-Pulido G, McCook LJ, Larkum AWD, et al (2007) Vulnerability of macroalgae of the Great Barrier Reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the Great Barrier Reef: a vulnerability assessment. Part II: species and species groups. The Great Barrier Reef Marine Park Authority, Townsville, p 153–192

    Google Scholar 

  • Doropoulos, C, Diaz-Pulido, G (2013) High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Marine Ecology Progress Series 475:93–99. https://doi.org/10.3354/meps10096

  • Duarte C (2000) Marine biodiversity and ecosystem services: an elusive link. J Exp Mar Biol Ecol 250:117–131. https://doi.org/10.1016/S0022-0981(00)00194-5

    Article  CAS  PubMed  Google Scholar 

  • Eriksson BK, Johansson G (2005) Effects of sedimentation on macroalgae: species-specific responses are related to reproductive traits. Oecologia 143:438–448. https://doi.org/10.1007/s00442-004-1810-1

    Article  CAS  PubMed  Google Scholar 

  • Feitosa JLL, Ferreira BP (2015) Distribution and feeding patterns of juvenile parrotfish on algal-dominated coral reefs. Mar Ecol 36:462–474. https://doi.org/10.1111/maec.12154

    Article  Google Scholar 

  • Floeter SR, Ferreira CEL, Dominici-Arosemena A, Zalmon IR (2004) Latitudinal gradients in Atlantic reef fish communities: trophic structure and spatial use patterns. J Fish Biol 64:1680–1699. https://doi.org/10.1111/j.1095-8649.2004.00428.x

    Article  Google Scholar 

  • Gaylord B, Reed DC, Raimondi PT, et al (2002) A physically based model of macroalgal spore dispersal in the wave and current-dominated nearshore. Ecology 83:1239–1251. https://doi.org/10.2307/3071939

    Article  Google Scholar 

  • Gilbert EI (2005) Juvenile green turtle (Chelonia mydas) foraging ecology: Feeding selectivity and forage nutrient analysis. Master Thesis, University of Central Florida 

    Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x

    Article  PubMed  Google Scholar 

  • Hanisak MD, Blair SM (1988) The deep-water macroalgal community of the East Florida continental shelf (USA). Helgoländer Meeresun 42:133–163. https://doi.org/10.1007/BF02366040

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. https://doi.org/10.1111/j.1461-0248.2005.00871.x

  • Harris L (2006) 2006 Monitoring of Martin County nearshore mitigation reefs. Prepared for Martin County Engineering Department. Stuart

    Google Scholar 

  • Harris L, Dillon K, Herren L (2007) Martin County’s nearshore mitigation reefs year-6 monitoring report. Prepared for Martin County. Stuart, p 17

    Google Scholar 

  • Herrnkind WF, Butler MJ (1986) Factors regulating postlarval settlement and juvenile microhabit use by spiny lobsters Panulirus argus. Mar Ecol Prog Ser 34:23–30. https://doi.org/10.3354/meps034023

  • Herren LW, Walters LJ, Beach KS (2006) Fragment generation, survival, and attachment of Dictyota spp. at Conch Reef in the Florida Keys, USA. Coral Reefs 25:287–295. https://doi.org/10.1007/s00338-006-0096-7

    Article  Google Scholar 

  • Holloway-Adkins KG (2001) A comparative study of the feeding ecology of Chelonia mydas (green turtle) and the incidental ingestion of Prorocentrum spp. Master Thesis, University of Central Florida

    Google Scholar 

  • Holloway-Adkins K (2014) Grazing effects of herbivorous fishes and juvenile green turtles (Chelonia mydas) on macroalgal communities. Doctoral Dissertation, Florida Atlantic University  

    Google Scholar 

  • Holloway-Adkins KG, Hanisak MD (2015) Macroalgal community within a warm temperate/subtropical biogeographic transition zone in the western Atlantic Ocean. Bull Mar Sci 91:295–319. https://doi.org/10.5343/bms.2014.1008

    Article  Google Scholar 

  • Holloway-Adkins KG, McCarthy DA (2007) The recruitment of macroalgae on subtidally deployed structures off the coastal waters of Brevard County, Florida. Report to Brevard County. Viera, p 21

    Google Scholar 

  • Hurd CL (2000) Water motion, marine macroalgal physiology, and production. J Phycol 36:453–472

    Article  CAS  PubMed  Google Scholar 

  • Johnson LE, Brawley SH (1998) Dispersal and recruitment of a canopy-forming intertidal alga: the relative roles of propagule availability and post-settlement processes. Oecologia 117:517–526

    Article  PubMed  Google Scholar 

  • Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J Exp Mar Bio Ecol 434–435:94–101. https://doi.org/10.1016/j.jembe.2012.08.005

  • Jones KR, Moriarity JE, Rusenko KW (2004) 100 hours of swimming with turtles: looking in on a population of greens. In: Mast RB, Hutchinson AH (eds) Twenty-fourth annual symposium on sea turtle biology and conservation. NOAA Technical Memorandum. NOAA-NMFS, San Jose, p 205

    Google Scholar 

  • Juett L, Miller CJ, Moore SJ, Ford ES (1976) Summer marine algae at Vero Beach, Florida. Florida Sci 39:76–80

    Google Scholar 

  • Kang CK, Choy EJ, Son Y, et al (2008) Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses. Mar Biol 153:1181–1198. https://doi.org/10.1007/s00227-007-0890-y

    Article  Google Scholar 

  • Kehler C (2012) Phosphorus limitation in reef macroalgae of South Florida. Master Thesis, Florida Atlantic University 

    Google Scholar 

  • Keith SA, Kerswell AP, Connolly SR (2014) Global diversity of marine macroalgae: Environmental conditions explain less variation in the tropics. Glob Ecol Biogeogr 23:517–529. https://doi.org/10.1111/geb.12132

  • Kuffner IB, Walters LJ, Becerro MA, et al (2006) Inhibition of coral recruitment by macroalgae. Mar Ecol Prog Ser 323:107–117

    Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, et al (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117. https://doi.org/10.1038/ngeo100

  • Kilar J, McLachlan J (1989) Effects of wave exposure on the community structure of a plant-dominated, fringing-reef platform: intermediate disturbance and disturbance-mediated competition. Mar Ecol Prog Ser 54:265–276. https://doi.org/10.3354/meps054265

    Article  Google Scholar 

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020. https://doi.org/10.1890/01-0622

    Article  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x

    Article  PubMed  Google Scholar 

  • Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–1131. https://doi.org/10.4319/lo.1997.42.5_part_2.1119

    Article  CAS  Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1992) Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuaries 15:75–82

    Article  CAS  Google Scholar 

  • Lapointe BE, Barile PJ, Littler MM, Littler DS (2005) Macroalgal blooms on southeast Florida coral reefs: II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4:1106–1122. https://doi.org/10.1016/j.hal.2005.06.002

    Article  CAS  Google Scholar 

  • Lapointe BE, Herren LW, Debortoli DD, Vogel MA (2015) Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 43:82–102. https://doi.org/10.1016/j.hal.2015.01.004

    Article  CAS  Google Scholar 

  • Lapointe BE, Herren LW, Paule AL (2017) Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA. Harmful Algae 70:1–22. https://doi.org/10.1016/j.hal.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  • Lewis SM, Norris JN, Searles RB (1987) The regulation of morphological plasticity in tropical reef algae by herbivory. Ecology 68:636–641

    Article  Google Scholar 

  • Littler MM, Arnold KE (1982) Primary productivity of marine macroalgal functional form groups from southwestern North America. J Phycol 18:307–311

    Google Scholar 

  • Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44

    Article  Google Scholar 

  • Littler MM, Littler DS, Taylor PR (1983) Evolutionary strategies in a tropical barrier reef system: functional-form groups of marine macroalgae. J Phycol 19:229–237. https://doi.org/10.1111/j.0022-3646.1983.00229.x

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge, p 366

    Google Scholar 

  • Lobel PS, Ogden JC (1981) Foraging by the herbivorous parrotfish Sparisoma radians. Mar Biol 64:173–183. https://doi.org/10.1007/BF00397106

    Article  Google Scholar 

  • Lubchenco J, Menge BA (1978) Community development and persistence in a low rocky intertidal zone. Ecol Monogr 48:67–94

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York

    Google Scholar 

  • Makowski C (2004) Home range and movements of juvenile Atlantic green turtles (Chelonia mydas L.) on shallow reef habitats in Palm Beach, Florida, USA. Master Thesis, Florida Atlantic University

    Google Scholar 

  • Makowski C, Seminoff JA, Salmon M (2006) Home range and habitat use of juvenile Atlantic green turtles (Chelonia mydas L.) on shallow reef habitats in Palm Beach, Florida, USA. Mar Biol 148:1167–1179. https://doi.org/10.1007/s00227-005-0150-y

    Article  Google Scholar 

  • Markager S, Sand-Jensen K (1992) Light requirements and depth zonation of marine macroalgae. Mar Ecol Prog Ser 88:83–92. https://doi.org/10.3354/meps088083

  • Marx JM, Herrnkind WF (1985) Macroalgae (Rhodophyta: Laurencia spp.) as habitat for young juvenile spiny lobsters, Panulirus argus. Bull Mar Sci 36:423–431

    Google Scholar 

  • McCarthy DA (2005) 2003 Summer upwelling events off Florida’s central Atlantic coast. Florida Sci 68:56–62

    Google Scholar 

  • McCoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: Integrating ecological, physiological, and geochemical responses to global change. J Phycol 51:6–24. https://doi.org/10.1111/jpy.12262

  • Mendes TC, Villaça RC, Ferreira CEL (2009) Diet and trophic plasticity of an herbivorous blenny Scartella cristata of subtropical rocky shores. J Fish Biol 75:1816–1830. https://doi.org/10.1111/j.1095-8649.2009.02434.x

    Article  CAS  PubMed  Google Scholar 

  • Mertens NL, Russell BD, Connell SD (2015) Escaping herbivory: ocean warming as a refuge for primary producers where consumer metabolism and consumption cannot pursue. Oecologia 179:1223–1229. https://doi.org/10.1007/s00442-015-3438-8

    Article  PubMed  Google Scholar 

  • Moffler MD, van Breedveld JF (1979) Nearshore Marine Ecology at Hutchinson Island, Florida: 1971–1974. In: Nearshore marine ecology at Hutchinson Island, Florida: 1971–1974. Florida Dept. of Natural Resources, Marine Research Laboratory, St. Petersburg, p 118–122

    Google Scholar 

  • Moore R, Clark WD, Vodopich DS (1998) Botany, 2nd edn. WCB/McGraw Hill, New York

    Google Scholar 

  • Mumby PJ, Broad K, Brumbaugh DR, et al (2008) Coral reef habitats as surrogates of species, ecological functions, and ecosystem services. Conserv Biol 22(4):941–951. https://doi.org/10.1111/j.1523-1739.2008.00933.x

    Article  PubMed  Google Scholar 

  • Ordoñez A, Doropoulos C, Diaz-Pulido G (2014) Effects of ocean acidification on population dynamics and community structure of crustose coralline algae. Biol Bull 226:255–268. https://doi.org/10.1086/BBLv226n3p255

  • Padilla DK, Allen BJ (2000) Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. J Exp Mar Biol Ecol 250:207–221. https://doi.org/10.1016/S0022-0981(00)00197-0

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW (2012) Marine plankton. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer Science+Business Media, New York and London, p 127–153

    Google Scholar 

  • Paine RT (1977) Controlled manipulations in the marine intertidal zone, and their contributions to ecological theory. In: Goulden CE (ed) The changing scenes in the natural sciences, 1776–1976: a symposium to commemorate the Bicentennial of the U.S. The Academy of Natural Sciences, Philadelphia, p 245–270

    Google Scholar 

  • Paul VJ, Thacker RW, Banks K, Golubic S (2005) Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). Coral Reefs 24:693–697. https://doi.org/10.1007/s00338-005-0061-x

  • Phillips RC (1961) Seasonal aspect of marine algae of St. Lucie Inlet and Indian River. Q J Florida Acad Sci 24:135–147

    Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Reed DC, Laur DR, Ebeling AW (1988) Variation in algal dispersal and recruitment: the importance of episodic events. Ecol Monogr 58:321–335

    Article  Google Scholar 

  • Renaud ML, Carpenter JA, Williams JA, Manzella-Tirpak SA (1995) Activities of juvenile green turtles, Chelonia mydas, at a jettied pass in south Texas. Fish Bull 93:586–593

    Google Scholar 

  • Ritson-Williams R, Arnold SN, Paul VJ, Steneck RS (2014) Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33:59–66. https://doi.org/10.1007/s00338-013-1113-2

  • Sagarin RD, Barry JP, Gilman SE, Baxter CH (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490

    Article  Google Scholar 

  • Salmon M, Makowski C, Christopher C, Whelan C (2004) Broward County sea turtle survey: 2004 Pre-construction monitoring of green turtle populations on the nearshore reefs of Broward County, Florida. Report to Broward County. Boca Raton

    Google Scholar 

  • Salt GW (1979) A comment on the use of the term emergent properties. Am Nat 113:145–148

    Article  Google Scholar 

  • Sanford E (2002) Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities. Integr Comp Biol 42:881–891. https://doi.org/10.1093/icb/42.4.881

    Article  PubMed  Google Scholar 

  • Santelices B (1990) Patterns of organizations of intertidal and shallow subtidal vegetation in wave exposed habitats of central Chile. Hydrobiologia 192:35–57. https://doi.org/10.1007/BF00006226

    Article  Google Scholar 

  • Santelices B (2002) Recent advances in fertilization ecology of macroalgae. J Phycol 38:4–10. https://doi.org/10.1046/j.1529-8817.2002.00193.x

  • Santelices B, Paya I (1989) Digestion survival of algae: some ecological comparisons between free spores and propagules in fecal pellets. J Phycol 25:693–699

    Article  Google Scholar 

  • Santos RG, Martins AS, Batista MB, Horta PA (2015) Regional and local factors determining green turtle Chelonia mydas foraging relationships with the environment. Mar Ecol Prog Ser 529:265–277. https://doi.org/10.3354/meps11276

  • Scheibling R (1986) Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia 68:186–198. https://doi.org/10.1007/BF00384786

    Article  PubMed  Google Scholar 

  • Schiel DR, Steinbeck JR, Foster MS (2004) Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833–1839

    Article  Google Scholar 

  • Searles RB (1984) Seaweed biogeography of the mid-Atlantic coast of the United States. Helgollander Meeresunters 38:259–271. https://doi.org/10.1007/BF01997484

    Article  Google Scholar 

  • Sinha E, Michalak A, Balaji V (2017) Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357:405–408

    Article  CAS  PubMed  Google Scholar 

  • Sousa WP (1979) Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol Monogr 49:227–254. https://doi.org/10.2307/1942484

  • Sousa WP (1980) The responses of a community to disturbance: the importance of successional age and species’ life histories. Oecologia 45:72–81 

    Article  PubMed  Google Scholar 

  • Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptative strategies. Annu Rev Ecol Syst 17:273–303

    Article  Google Scholar 

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Steneck RS, Watling L (1982) Feeding capabilities and limitation of herbivorous mollusc: a functional group approach. Mar Biol 68:299–319

    Article  Google Scholar 

  • Stephenson TA, Stephenson A (1952) Life between tide-marks in North America: II. North Florida and the Carolinas. J Ecol 40:1–49

    Article  Google Scholar 

  • Stoner AW, Livingston RJ (1984) Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia 1984:174–187

    Google Scholar 

  • Szmant AM (2002) Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25:743–766. https://doi.org/10.1007/BF02804903

    Article  CAS  Google Scholar 

  • Taylor PR, Hay ME (1984) Functional morphology of intertidal seaweeds: adaptive significance of aggregate vs. solitary forms. Mar Ecol Prog Ser 18:295–302

    Article  Google Scholar 

  • Thompson N, Kelley K, Davis J, et al (2007) Endolithic and epilithic algae and grazers of coquina beach rock at Marineland, Florida. Florida Sci 61:97–110

    Google Scholar 

  • USACE (US Army Corps of Engineers) (2003) 3.0 Affected Environment. In: Coast of Florida erosion and storm effects study Region III with Draft Environmental Impact Statement. Report to Broward County. Jacksonville, p EIS 30-35

    Google Scholar 

  • Van den Hoek C, Breeman AM, Stam WT (1990) The geographic distribution of seaweed species in relation to temperature: present and past. In: Beukema JJ, Wolff W, Brouns J (eds) Expected effects of climatic change on marine coastal ecosystems. Springer Netherlands, Dordrecht, p 55–67

    Chapter  Google Scholar 

  • Vare CN (1991) A survey, analysis, and evaluation of the nearshore reefs situated off Palm Beach County, Florida. Master Thesis, Florida Atlantic University

    Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, et al (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B Biol Sci 281:1–10. https://doi.org/10.1098/rspb.2014.0846

    Article  Google Scholar 

  • Vermeij MJA, Dailer ML, Walsh SM, et al (2010) The effects of trophic interactions and spatial competition on algal community composition on Hawaiian coral reefs. Mar Ecol 31:291–299. https://doi.org/10.1111/j.1439-0485.2009.00343.x

    Article  Google Scholar 

  • Vroom PS, Braun CL (2010) Benthic composition of a healthy subtropical reef: baseline species-level cover, with an emphasis on algae, in the Northwestern Hawaiian Islands. PLoS One 5(3):e9733. https://doi.org/10.1371/journal.pone.0009733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters LJ, Smith CM, Coyer JA, et al (2002) Asexual propagation in the coral reef macroalga Halimeda (Chlorophyta, Bryopsidales): production, dispersal and attachment of small fragments. J Exp Mar Biol Ecol 278:47–65. https://doi.org/10.1016/S0022-0981(02)00335-0

    Article  Google Scholar 

  • Wernberg T, Russell BD, Moore PJ, et al (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Biol Ecol 400:7–16. https://doi.org/10.1016/j.jembe.2011.02.021

    Article  Google Scholar 

  • Wershoven RW, Wershoven JL (1992) Stomach content analysis of stranded juvenile and adult green turtles in Broward and Palm Beach counties. In: Salmon M, Wyneken J (eds) Eleventh annual workshop on sea turtle biology and conservation. NOAA Technical Memorandum. NOAA-NMFS, Jekyll Island, p 124–126

    Google Scholar 

  • Whorff JS, Whorff LL, Sweet M III (1995) Spatial variation in an algal turf community with respect to substratum slope and wave height. J Mar Biol Assoc United Kingdom 75:429–444

    Article  Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359. https://doi.org/10.1146/annurev.ecolsys.38.091206.095543

    Article  Google Scholar 

  • Wiman SK, McKendree WG (1975) Distribution of Halimeda plants and sediments on and around a patch reef near Old Rhodes Key, Florida. J Sediment Res 45:415–421. https://doi.org/10.1306/212F6D7A-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Winston JE, Eiseman NJ (1980) Bryozoan-algal associations in coastal and continental shelf waters of eastern Florida. Florida Sci 43:65–74

    Google Scholar 

  • World Health Organization (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London

    Google Scholar 

  • Webster NS, Uthicke S, Botté ES, et al (2013) Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Chang Biol 19:303–315. https://doi.org/10.1111/gcb.12008

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 3.1

Number of macroalgal species on nearshore hardbottom reefs by County. Data include location of study (Region), Species Count, zone of sampling (Intertidal, Subtidal, Inshore, Offshore), if the study was part of pre- (or post-) construction monitoring transects (PCM-T), Study Method used to collect data (i.e., natural reef or artificial reef, beach nourishment monitoring, or foraging analysis, etc.), time period (Season/Year). Color-coding indicates that similar study methods were used

figure a
figure b

Appendix 3.2

Families, genera, and numbers of species within each genus of macroalgae and cyanobacteria documented for east Florida coast nearshore hardbottom reef habitats. Studies are listed in Appendix 3.1. A zero under “Number of species” column indicates that algae were identified only to genus level

Family

Genus

Number of species

CHLOROPHYTA

Bryopsidaceae

Bryopsis

2

 Caulerpaceae

Caulerpa

12

 Cladophoraceae

Chaetomorpha

3

Cladaphora

6

Rhizoclonium

2

 Codiaceae

Codium

5

 Dasycladaceae

Batophora

1

Cymopolia

1

Dasycladus

1

Neomeris

1

 Derbesiaceae

Derbesia

1

 Halimedaceae

Halimeda

6

 Ostreobiaceae

Ostreobium

3

 Phaeophilaceae

Phaeophila

1

 Polyphysaceae

Acetabularia

4

 Siphonocladaceae

Dictyosphaeria

0

Ernodesmis

1

Siphonocladus

1

Ventricaria

1

 Udoteaceae

Avrainvillea

2

Penicillus

1

Udotea

6

 Ulvaceae

Ulva

6

 Ulvellaceae

Entocladia

1

 Valoniaceae

Valonia

1

RHODOPHYTA

 Acrochaetiaceae

Acrochaetium

2

 Bangiaceae

Porphyra

1

 Bonnemaisoniaceae

Asparagopsis

1

 Ceramiaceae

Callithamnion

2

Centroceras

1

Ceramium

9

Crouania

1

Griffithsia

1

Spermothamnion

3

Spyridia

3

Wrangelia

2

 Champiaceae

Champia

1

 Corallinaceae

Amphiroa

4

Fosliella

2

Jania

4

Lithophyllum

0

Titanophora

1

 Cystocloniaceae

Hypnea

5

 Dasyaceae

Dasya

6

Dasyopsis

1

Dictyurus

1

Heterosiphonia

2

 Delesseriaceae

Nitophyllum

1

 Dumontiaceae

Dudresnaya

1

 Erythrotrichiaceae

Erythrotrichia

1

Erythrocladia

1

 Galaxauraceae

Galaxaura

4

Scinaia

1

 Gelidiaceae

Gelidiella

3

Gelidiopsis

3

Gelidium

3

 Gigartinaceae

Gigartina

1

 Gracilariaceae

Gracilaria

16

Hydropuntia

1

 Halymeniaceae

Cryptonemia

2

Grateloupia

1

Halymenia

3

 Liagoraceae

Liagora

2

 Lithothamniaceae

Lithothamnion

0

 Lomentariaceae

Lomentaria

1

 Peyssonneliaceae

Peyssonnelia

1

 Phyllophoraceae

Gymnogongrus

1

 Pterocladiaceae

Pterocladia

2

 Rhodomelaceae

Acanthophora

2

Chondria

8

Chondrocanthus (prev. Laurencia)

1

Bostrychia

2

Bryocladia

2

Bryothamnion

2

Digenia

1

Laurencia

8

Polysiphonia

5

Herposiphonia

1

 Rhodymeniaceae

Asteromenia

1

Botryocladia

4

Chrysymenia

2

Rhodymenia

2

 Solieriaceae

Agardhiella

2

Eucheuma

2

Neoagardhiella (Agardhiella)

0

Solieria

2

 Wurdemanniaceae

Wurdemannia

1

PHAEOPHYCEAE

 Acinetosporaceae

Hincksia

4

 Bachelotiaceae

Bachelotia

1

 Chordariaceae

Myriotrichia

1

 Dictyotaceae

Dictyopteris

2

Dictyota

17

Dilophus (Dictyota)

1

Lobophora

1

Padina

6

Spatoglossum

1

Stypopodium

1

 Ectocarpaceae

Ectocarpus

1

 Sargassaceae

Sargassum

7

 Scytosiphonaceae

Colpomenia

1

Hydroclathrus

1

Petalonia

1

Rosenvingea

2

 Sphacelariaceae

Sphacelaria

2

CYANOPHYTA

 Aphanizomenonaceae

Nodularia

1

 Entophysalidaceae

Entophysalis

1

 Hapalosiphonaceae

Mastigocoleus

1

 Hydrococcaceae

Hormathonema

1

 Hyellaceae

Hyella

3

Solentia

1

 Microcoleaceae

Microcoleus

3

Porphyrosiphon

1

 Microcystaceae

Anacystis

4

 Nostocaceae

Anabaena

1

Hormothamnion

1

Nostoc

0

 Oscillatoriaceae

Lyngbya

0

Oscillatoria

1

Phormidium

0

Plectonema

2

 Rivulariaceae

Calothrix

2

 Schizotrichaceae

Schizothrix

2

 Spirulinaceae

Spirulina

0

 Total Families

61

 Total Genera

123

 Total Species

301a

  1. aIncludes 8 algae not identified to species level

Appendix 3.3

Macroalgae and cyanobacteria taxa identified by county from east Florida coast nearshore hardbottom reef studies. Individual studies are listed in Appendix 3.1

figure c
figure d
figure e
figure f
figure g

Appendix 3.4

Species and percent composition of sheet functional form group macroalgae in nearshore hardbottom reefs studies. Color shading indicates similar study methods were used

figure h

Appendix 3.5

Species and percent composition of filamentous functional form group macroalgae in nearshore hardbottom reef studies. Color shading indicates similar study methods were used

figure i

Appendix 3.6

Species and percent composition of coarsely-branched functional form group macroalgae in nearshore hardbottom reef studies. Color shading indicates similar study methods were used

figure j

Appendix 3.7

Species and percent composition of thick-leathery functional form group macroalgae in nearshore hardbottom reef studies. Color shading indicates similar study methods were used

figure k

Appendix 3.8

Species and percent composition of jointed-calcareous functional form group macroalgae in nearshore hardbottom reef studies. Color shading indicates similar study methods were used

figure l

Appendix 3.9

Species and percent composition of crustose functional form group macroalgae in nearshore hardbottom reef studies. Color shading indicates similar study methods were used

figure m

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCarthy, D.A., Lindeman, K.C., Snyder, D.B., Holloway-Adkins, K.G. (2020). Macroalgae and Cyanobacteria. In: Islands in the Sand. Springer, Cham. https://doi.org/10.1007/978-3-030-40357-7_3

Download citation

Publish with us

Policies and ethics