Skip to main content

Great Salt Lake Artemia: Ecosystem Functions and Services with a Global Reach

  • Chapter
  • First Online:
Great Salt Lake Biology

Abstract

The anostracan crustacean Artemia franciscana is the most abundant zooplankter in Great Salt Lake (GSL) and generally the only zooplankton in the largest bay (Gilbert Bay) of this hypersaline system. Colloquially referred to as brine shrimp, Artemia are crucially important organisms in GSL and provide numerous ecosystem services including the control of eutrophication in this naturally productive lake, an abundant energy supply to a large avian population along hemispheric flyways, and critical support of global aquaculture through the large-scale commercial harvest of the resting eggs (cysts) for use as live feed in shrimp and finfish production across the world. This chapter examines the GSL Artemia population and its management from multiple angles. The successful adaptive management of the Artemia resource is discussed as a model of cooperative public and private research. An extensive body of research on the biochemistry and physiology of diapause and quiescence among Artemia cysts is reviewed. Population structure and patterns of GSL Artemia are examined across annual and multi-decadal timescales using large datasets of public and private research programs. Population level responses to spatial and temporal fluctuations in salinity are evaluated. Top-down and bottom-up controls on the Artemia population are reviewed, including the influence of salinity stratification (meromixis) on nutrient distribution within the lake and new molecular evidence of benthic linkages to the Artemia population via microbialites. Finally, we provide an assessment of threats to the GSL Artemia population and a summary of management structures and initiatives in place to mitigate them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzopolous TJ, Agh N, Van Stappen G, Rouhani R et al (2006a) Artemia sites in Iran. J Mar Biol Asses UK 86:299–307

    Google Scholar 

  • Abatzopolous TJ, Baxevanis AD, Triantaphyllidis GV et al (2006b) Quality evaluation of Artemia urmiana Günther (Urmia Lake, Iran) with special emphasis on its particular cyst characteristics (International Study on Artemia LXIX). Aquaculture 254:442–454

    Google Scholar 

  • Abatzopoulos TJ, El-Bermawi N, Vasdekis C et al (2003) Effects of salinity and temperature on reproductive and life span characteristics of clonal Artemia. Hydrobiologia 492:191–199

    Google Scholar 

  • Acker JP, Fowler A, Lauman B et al (2004) Survival of desiccated mammalian cells: beneficial effects of isotonic media. Cell Preserv Technol 1(2):129–140

    Google Scholar 

  • Ako H, Tamaru CS, Bass P, Lee CS (1994) Enhancing the resistance of physical stress in larvae of Mugil cephalus by the feeding of enriched Artemia nauplii. Aquaculture 122:81–90

    Google Scholar 

  • Allgeier JE, Rosemond AD, Layman CA (2011) The frequency and magnitude of non-additive responses to multiple nutrient enrichment. J Appl Ecol 48(1):96–101

    Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726

    Google Scholar 

  • Aristizábal EO, Suárez J (2006) Efficiency of co-feeding red porgy (Pagrus pagrus L.) larvae with live and compound diet. Rev Biol Mar Oceanogr 41(2):203–208

    Google Scholar 

  • Asem A, Wang P, Sun SC (2018) Comparative phylogenetic perspectives on the evolutionary relationships in the brine shrimp Artemia leach, 1819 (Crustacea: Anostraca) based on secondary structure of ITS1 gene. J Genet Res 4(2):72–84

    Google Scholar 

  • Bahabadi MN, Mozanzadeh MT, Agh N et al (2018) Enriched Artemia with L-lysine and DL-methionine on growth performance, stress resistance, and fatty acid profile of Litopenaeus vannamei postlarvae. J Appl Aquac 30(4):325–336. https://doi.org/10.1080/10454438.2018.1484838

    Article  Google Scholar 

  • Barnes BD, Wurtsbaugh WA (2015) The effects of salinity on plankton and benthic communities in the Great Salt Lake, Utah, USA: a microcosm experiment. Can J Fish Aquat Sci 72(6):807–817

    CAS  Google Scholar 

  • Baskin RL (2005) Calculation of area and volume for the south part of Great Salt Lake, Utah U.S. Geological Survey Open-File Report 2005–1327

    Google Scholar 

  • Baskin RL (2014) Occurrence and spatial distribution of microbial bioherms in Great Salt Lake, Utah. Dissertation, University of Utah

    Google Scholar 

  • Baxevanis AD, Kappas I, Abatzopoulos TJ (2006) Molecular phylogenetics and asexuality in the brine shrimp Artemia. Mol Phylogenet Evol 40(3):724–738

    CAS  PubMed  Google Scholar 

  • Beck AB, Bengston DA (1978) Review of studies evaluating effects of live and artificial diets on survival and growth of the marine atherinid fish Menidia menidia the Atlantic Silverside. In: FAO, Rome (Italy). Fisheries Department. Symposium on Finfish Nutrition and Feed Technology, Hamburg

    Google Scholar 

  • Beisner K, Naftz DL, Johnson WP et al (2009) Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah. Sci Total Environ 407(19):5263–5273

    CAS  PubMed  Google Scholar 

  • Belovsky GE, Perschon WC (2019) A management case study for a new commercial fishery: brine shrimp harvesting in Great Salt Lake, Utah, USA. Ecol Appl 29(3):e01864

    PubMed  Google Scholar 

  • Belovsky GE, Stephens D, Perschon C et al (2011) The Great Salt Lake ecosystem (Utah, USA): long term data and a structural equation approach. Ecosphere 2(3):1–40

    Google Scholar 

  • Bengtson DA (2003) Status of marine aquaculture in relation to live prey: past, present and future. In: Støttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science Ltd, Oxford, pp 1–16

    Google Scholar 

  • Bengtson DA, Léger P, Sorgeloos P (1991) Use of Artemia as a food source for aquaculture. In: Brown RA, Sorgeloos P, Trotman CNA (eds) Artemia Biology, vol 11. CRC Press, Boca Raton, FL, pp 255–285

    Google Scholar 

  • Bioeconomics, Inc. (2012) Economic significance of the Great Salt Lake to the State of Utah. Report to the State of Utah, Great Salt Lake Advisory Council. https://documents.deq.utah.gov/water-quality/standards-technical-services/great-salt-lake-advisory-council/Activities/DWQ-2012-006864.pdf. Accessed 14 May 2019

  • Blomqvist S, Gunnars A, Elmgren R (2004) Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnol Oceanogr 49(6):2236–2241

    Google Scholar 

  • Boehrer B, Kiwel U, Rahn K et al (2014) Chemocline erosion and its conservation by freshwater introduction to meromictic salt lakes. Limnologica 44:81–89

    CAS  Google Scholar 

  • Bostock J, McAndrew B, Richards R et al (2010) Aquaculture: global status and trends. Philos Trans R Soc B Biol Sci 365(1554):2897–2912

    Google Scholar 

  • Brix KV, Cardwell RD, Adams WJ (2003) Chronic toxicity of arsenic to the Great Salt Lake brine shrimp, Artemia franciscana. Ecotoxicol Environ Saf 54(2):169–175

    CAS  PubMed  Google Scholar 

  • Brix KV, Deforest DK, Cardwell RD et al (2004) Derivation of a chronic site-specific water quality standard for selenium in the Great Salt Lake, Utah, USA. Environ Toxicol Chem 23(3):606–612

    CAS  PubMed  Google Scholar 

  • Brix KV, Gerdes RM, Adams WJ et al (2006) Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch Environ Contam Toxicol 51(4):580–583

    CAS  PubMed  Google Scholar 

  • Browne RA, Bowen ST (1991) Taxonomy and population genetics of Artemia. In: Browne RA, Sorgeloos P, Trotman CNA (eds) Artemia Biology. CRC, Boca Raton, p 384

    Google Scholar 

  • Browne RA, Lenz PH (1991) Ecology of Artemia. In: Browne RA, Sorgeloos P, Trotman CNA (eds) Artemia Biology. CRC, Boca Raton, FL, pp 237–254

    Google Scholar 

  • Browne RA, Wanigasekara G (2000) Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. J Exp Mar Biol Ecol 267:107–119

    Google Scholar 

  • Buchanan SS (2004) Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 13(3):295–305

    CAS  PubMed  Google Scholar 

  • Burne RV, Moore L (1987) Microbialites; organosedimentary deposits of benthic microbial communities. PALAIOS 2:241–254

    Google Scholar 

  • Canton SP, Van Derveer WD (1997) Selenium toxicity to aquatic life: an argument for sediment-based water quality criteria. Environ Toxicol Chem 16(6):1255–1259

    CAS  Google Scholar 

  • Caudell JN (2001) Biology of Eared Grebes (Podiceps nigricollis) on the Great Salt Lake, Utah. Dissertation, Utah State University

    Google Scholar 

  • Caudell JN, Conover MR (2006a) Energy content and digestibility of brine shrimp (Artemia franciscana) and other prey items of eared grebes (Podiceps nigricollis) on the Great Salt Lake, Utah. Biol Conserv 130(2):251–254

    Google Scholar 

  • Caudell JN, Conover MR (2006b) Behavioral and physiological responses of Eared Grebes (Podiceps nigricollis) to variations in brine shrimp (Artemia franciscana) densities. West North Am Nat 66(1):12–23

    Google Scholar 

  • Céspedes V, Sánchez MI, Green AJ (2017) Predator–prey interactions between native brine shrimp Artemia parthenogenetica and the alien boatman Trichocorixa verticalis: influence of salinity, predator sex, and size, abundance and parasitic status of prey. Peer J 5:e3554

    PubMed  Google Scholar 

  • Chakraborty RD, Chakraborty K, Radhakrishnan EV (2007) Variation in fatty acid composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. J Agric Food Chem 55(10):4043–4051

    CAS  PubMed  Google Scholar 

  • Chen T, Acker JP, Eroglu A et al (2001) Beneficial effect of intracellular trehalose on the membrane integrity of dried mammalian cells. Cryobiology 43(2):168–181

    CAS  PubMed  Google Scholar 

  • Chen WH, Ge X, Wang W et al (2009) A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genomics 10(1):52

    PubMed  PubMed Central  Google Scholar 

  • Clegg JS (1965) The origin of trehalose and its significance during the formation of encysted dormant embryos of Artemia salina. Comp Biochem Physiol 14(1):135–143

    CAS  PubMed  Google Scholar 

  • Clegg JS (1978) Hydration-dependent metabolic transitions and the state of cellular water in Artemia cysts. In: Dry biological systems. Academic Press, New York, pp 117–153

    Google Scholar 

  • Clegg JS (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200(3):467–475

    CAS  PubMed  Google Scholar 

  • Clegg JS (2001) Cryptobiosis—a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 128(4):613–624

    CAS  PubMed  Google Scholar 

  • Clegg JS (2005) Desiccation tolerance in encysted embryos of the animal extremophile, Artemia. Integr Comp Biol 45(5):715–724

    CAS  PubMed  Google Scholar 

  • Clegg JS (2007) Protein stability in Artemia embryos during prolonged anoxia. Biol Bull 212(1):74–81

    CAS  PubMed  Google Scholar 

  • Clegg JS (2011) Stress-related proteins compared in diapause and in activated, anoxic encysted embryos of the animal extremophile, Artemia franciscana. J Insect Physiol 57(5):660–664

    CAS  PubMed  Google Scholar 

  • Clegg JS, Jackson SA (1992a) Aerobic heat shock activates trehalose synthesis in embryos of Artemia franciscana. FEBS Lett 303(1):45–47

    CAS  PubMed  Google Scholar 

  • Clegg JS, Jackson SA (1992b) The metabolic status of quiescent and diapause embryos of Artemia franciscana (Kellog). Special issues in the advancement of limnology. Evol Ecol Asp Arch Hydrobiol Crustac Diapause 52:425–439

    Google Scholar 

  • Clegg JS, Jackson SA (1997) Significance of cyst fragments of Artemia sp. recovered from a 27,000 year old core taken under the Great Salt Lake, Utah, USA. Int J Salt Lake Res 6:207–216

    Google Scholar 

  • Clegg JS, Trotman CNA (2002) Physiological and biochemical aspects of Artemia ecology. In: Abatzopoulos TJ, Beadmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology, vol 1. Kluwer Academic, London, pp 128–170

    Google Scholar 

  • Clegg JS, Jackson SA, Warner AH (1994) Extensive intracellular translocations of a major protein accompany anoxia in embryos of Artemia franciscana. Exp Cell Res 212(1):77–83

    CAS  PubMed  Google Scholar 

  • Clegg JS, Drinkwater LE, Sorgeloos P (1996) The metabolic status of diapause embryos of Artemia franciscana (SFB). Physiol Zool 69(1):49–66

    Google Scholar 

  • Clegg JS, Willsie JK, Jackson SA (1999) Adaptive significance of a small heat shock/α-crystallin protein (p26) in encysted embryos of the brine shrimp, Artemia franciscana. Am Zool 39(6):836–847

    CAS  Google Scholar 

  • Clegg JS, Van Hoa N, Sorgeloos P (2001) Thermal tolerance and heat shock proteins in encysted embryos of Artemia from widely different thermal habitats. In: Melack JM, Jellison R, Herbst DB (eds) Saline lakes. Developments in hydrobiology, vol 162. Springer, Dordrecht

    Google Scholar 

  • Codd GA, Bell SG, Kaya K et al (1999) Cyanobacterial toxins, exposure routes and human health. Eur J Phycol 34(4):405–415

    Google Scholar 

  • Collins CH, Clegg JS (2004) A small heat-shock protein, p26, from the crustacean Artemia protects mammalian cells (Cos-1) against oxidative damage. Cell Biol Int 28(6):449–455

    CAS  PubMed  Google Scholar 

  • Conceição LE, Yúfera M, Makridis P et al (2010a) Live feeds for early stages of fish rearing. Aquac Res 41(5):613–640

    Google Scholar 

  • Conceição LE, Aragão C, Richard N et al (2010b) Novel methodologies in marine fish larval nutrition. Fish Physiol Biochem 36(1):1–16

    PubMed  Google Scholar 

  • Conover MR, Caudell JN (2009) Energy budgets for eared grebes on the Great Salt Lake and implications for harvest of brine shrimp. J Wildl Manag 73(7):1134–1139

    Google Scholar 

  • Conover MR, Vest JL (2009) Selenium and mercury concentrations in California gulls breeding on the Great Salt Lake, Utah, USA. Environ Toxicol Chem 28(2):324–329

    CAS  PubMed  Google Scholar 

  • Conroy BJ, Steinberg DK, Song B et al (2017) Mesozooplankton graze on cyanobacteria in the Amazon River plume and Western Tropical North Atlantic. Front Microbiol 8:1436

    PubMed  PubMed Central  Google Scholar 

  • Conte FP, Jellison RS, Starrett GL (1988) Nearshore and pelagic abundances of Artemia monica in Mono Lake, California. Hydrobiologia 158(1):173–181

    Google Scholar 

  • Cooper SC, Winkler DW, Lenz PH (1984) The effect of grebe predation on a brine shrimp population. J Anim Ecol 53:51–64

    Google Scholar 

  • Coutteau P, Sorgeloos P (1997) Manipulation of dietary lipids, fatty acids and vitamins in zooplankton cultures. Freshw Biol 38(3):501–512

    CAS  Google Scholar 

  • Criel GR, MacRae TH (2002) Reproductive biology of Artemia. In: Artemia: basic and applied biology. Springer, Dordrecht, pp 39–128

    Google Scholar 

  • Croghan PC (1958) The osmotic and ionic regulation of Artemia salina (L.). J Exp Biol 35:219–233

    CAS  Google Scholar 

  • Crowe JH (2004) Stabilization of cells in the dry state by trehalose. RedNova. http://www.rednova.com/modules/news/tool.php?tool=print&id=63450.html. Accessed 13 Nov 2004

  • Crowe JH, Crowe LM (2000) Preservation of mammalian cells-learning nature’s tricks. Nat Biotechnol 18:145–146

    CAS  PubMed  Google Scholar 

  • Curnow J, Kin J, Bosmans J et al (2006) The effect of reduced Artemia and rotifer use facilitated by a new microdiet in the rearing of barramundi Lates calcarifer (BLOCH) larvae. Aquaculture 257(1–4):204–213

    Google Scholar 

  • Dana GL, Lenz PH (1986) Effects of increasing salinity on an Artemia population from Mono Lake, California. Oecologia 68:428–436

    PubMed  Google Scholar 

  • Dana GL, Jellison R, Melack JM (1990) Artemia monica cyst production and recruitment in mono Lake, California, USA. In: Saline lakes. Springer, Dordrecht, pp 233–243

    Google Scholar 

  • Dattilo AM, Bracchini L, Carlini L et al (2005) Estimate of the effects of ultraviolet radiation on the mortality of Artemia franciscana in naupliar and adult stages. Int J Biometeorol 49(6):388–395

    PubMed  Google Scholar 

  • Davis JS (2000) Structure, function, and management of the biological system for seasonal solar saltworks. Global NEST J 2(3):217–226

    Google Scholar 

  • Davis JS, Giordano M (1995) Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks. Int J Salt Lake Res 4(4):335–347

    Google Scholar 

  • Dewsnup RL, Jensen DW (1980) Legal battle over ownership of the Great Salt Lake. In: Gwynn JW (ed) Great salt Lake: a scientific, historical, and economic overview, vol 116. Utah Geological and Mineral Survey, Salt Lake City, pp 15–18

    Google Scholar 

  • Dhert P, Rombaut G, Suantika G et al (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200(1–2):129–146

    Google Scholar 

  • Dittmann KK, Rasmussen BB, Castex M et al (2017) The aquaculture microbiome at the centre of business creation. Microb Biotechnol 10(6):1279

    PubMed  PubMed Central  Google Scholar 

  • Dobbeleir JN, Bossuyt AE, Bruggeman E, Sorgeloos P (1980) New aspects of the use of inert diets for high density culturing of brine shrimp. In: Persoone G, Sorgeloos P, Roels O, Jaspers E (eds) The brine shrimp Artemia, vol 3, Ecology, culturing, use in aquaculture, Universa Press, Wetteren, p 456

    Google Scholar 

  • Dodson SI (2005) Introduction to limnology. McGraw Hill, New York, p 400

    Google Scholar 

  • Drinkwater LE, Clegg JS (1991) Experimental biology of cyst diapause. In: Browne RA, Sorgeloos P, Trotman CNA (eds) Artemia biology. CRC, Boca Raton, FL, pp 93–115

    Google Scholar 

  • Drinkwater LE, Crowe JH (1987) Regulation of embryonic diapause in Artemia: environmental and physiological signals. J Exp Zool 241:297–307

    CAS  Google Scholar 

  • Durbin EG, Casas MC, Rynearson TA (2012) Copepod feeding and digestion rates using prey DNA and qPCR. J Plankton Res 34(1):72–82

    CAS  Google Scholar 

  • Eardley AJ, Gvosdetsky V (1960) Analysis of Pleistocene core from Great Salt Lake, Utah. Geol Soc Am Bull 71:1323–1344

    CAS  Google Scholar 

  • Edmondson WT, Anderson GC, Peterson DR (1956) Artificial eutrophication of Lake Washington. Limnol Oceanogr 1(1):47–53

    Google Scholar 

  • Emerson K, Russo RC, Lund RE, Thurston RV (1975) Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Board Can 32:2379–2383

    CAS  Google Scholar 

  • Eroglu A, Russo MJ, Bieganski R et al (2000) Intercellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18(2):163–167

    CAS  PubMed  Google Scholar 

  • Evans JC, Prepas EE (1996) Potential effects of climate change on ion chemistry and phytoplankton communities in prairie saline lakes. Limnol Oceanogr 41(5):1063–1076

    CAS  Google Scholar 

  • Evans JC, Prepas EE (1997) Relative importance of iron and molybdenum in restricting phytoplankton biomass in high phosphorus saline lakes. Limnol Oceanogr 42(3):461–472

    CAS  Google Scholar 

  • Evjemo JO, Coutteau P, Olsen Y, Sorgeloos P (1997) The stability of docosahexaenoic acid in two Artemia species following enrichment and subsequent starvation. Aquaculture 155(1–4):135–148

    CAS  Google Scholar 

  • FAO (2018a) The state of world fisheries and aquaculture 2018. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/i9540en/I9540EN.pdf. Accessed 6 Mar 2019

  • FAO (2018b) The state of world fisheries and aquaculture 2018. Meeting the sustainable development goals. Rome. License: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Fazel N, Berndtsson R, Uvo CB et al (2018) Regionalization of precipitation characteristics in Iran’s Lake Urmia basin. Theor Appl Climatol 132(1–2):363–373

    Google Scholar 

  • Felix EA, Rushforth SR (1979) The algal flora of the Great Salt Lake, Utah, USA. Nova Hedwigia 31:163–195

    Google Scholar 

  • Fendrich C (1988) Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and new halophilic aerobic coccoid Eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol 11:36–43

    CAS  Google Scholar 

  • Fernández RG (2001) Artemia bioencapsulation I. Effect of particle sizes on the filtering behavior of Artemia franciscana. J Crustac Biol 21(2):435–442

    Google Scholar 

  • Forsberg C (1989) Importance of sediments in understanding nutrient cycling in lakes. Hydrobiologia 176(1):263–277

    Google Scholar 

  • Frank MG (2016) Migratory Waterbird ecology at a critical staging area, Great Salt Lake, Utah. Dissertation, Utah State University

    Google Scholar 

  • Furuita H, Takeuchi T, Toyota M et al (1996) EPA and DHA requirements in early juvenile red sea bream using HUFA enriched Artemia nauplii. Fish Sci 62(2):246–251

    CAS  Google Scholar 

  • Gajardo GM, Beardmore JA (2012) The brine shrimp Artemia: adapted to critical life conditions. Front Physiol 3:185

    PubMed  PubMed Central  Google Scholar 

  • Gajardo G, Abatzopoulos TJ, Kappas I et al (2002) Evolution and speciation. In: Abatzopoulos TJ, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology. Springer, Dordrecht, pp 225–250

    Google Scholar 

  • Gilpin LC, Davidson K, Roberts E (2004) The influence of changes in nitrogen: silicon ratios on diatom growth dynamics. J Sea Res 51(1):21–35

    CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    CAS  Google Scholar 

  • Grimaldi DA (2010) 400 million years on six legs: on the origin and early evolution of Hexapoda. Arthropod Struct Dev 39(2–3):191–203

    PubMed  Google Scholar 

  • Gruner DS (2004) Attenuation of top-down and bottom-up forces in a complex terrestrial community. Ecology 85(11):3010–3022

    Google Scholar 

  • Gruner DS, Taylor AD (2006) Richness and species composition of arboreal arthropods affected by nutrients and predators: a press experiment. Oecologia 147(4):714–724

    PubMed  Google Scholar 

  • Gruner DS, Smith JE, Seabloom EW et al (2008) A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol Lett 11(7):740–755

    PubMed  Google Scholar 

  • Guareschi S, Coccia C, Sánchez-Fernández D et al (2013) How far could the alien boatman Trichocorixa verticalis spread? Worldwide estimation of its current and future potential distribution. PLoS One 8(3):e59757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo N, Puhlev I, Brown DR et al (2000) Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 18:168–171

    CAS  PubMed  Google Scholar 

  • Gutrich JJ, Gigliello K, Gardner KV, Elmore AJ (2016) Economic returns of groundwater management sustaining an ecosystem service of dust suppression by alkali meadow in Owens Valley, California. Ecol Econ 121:1–11

    Google Scholar 

  • Hajirostamloo M (2008) Differences of shell structure in cysts of Artemia from various depth of Urmia Lake (Iran). Res J Biol Sci 3(6):648–653

    Google Scholar 

  • Hammer UT (1981) Primary production in saline lakes. In: Salt lakes. Springer, Dordrecht, pp 47–57

    Google Scholar 

  • Hammer UT, Shamess J, Haynes RC (1983) The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105(1):1–26

    Google Scholar 

  • Han B, Bischof JC (2004) Engineering challenges in tissue preservation. Cell Preserv Technol 2(2):91–112

    Google Scholar 

  • Hand SC (1998) Quiescence in Artemia franciscana embryos: reversible arrest of metabolism and gene expression at low oxygen levels. J Exp Biol 201:1233–1242

    CAS  PubMed  Google Scholar 

  • Hand SC, Carpenter JF (1986) pH-induced metabolic transitions in Artemia embryos mediated by a novel hysteretic trehalase. Science 232:1535–1537

    CAS  PubMed  Google Scholar 

  • Hand SC, Gnaiger E (1988) Anaerobic dormancy quantified in Artemia embryos: a calorimetric test of the control mechanism. Science 239:1425–1427

    CAS  PubMed  Google Scholar 

  • Hand SC, Menze MA (2008) Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death. J Exp Biol 211(12):1829–1840

    CAS  PubMed  Google Scholar 

  • Hand SC, Podrabsky JE (2000) Bioenergetics of diapause and quiescence in aquatic animals. Thermochim Acta 349:31–42

    CAS  Google Scholar 

  • Hand SC, Podrabsky JE, Eads BD et al (2001) Interrupted development in aquatic organisms: ecological context and physiological mechanisms. In: Atkinson D, Thorndyke M (eds) Environment and animal development. Genes, life histories and plasticity. BIOS Scientific Publishers, Oxford, pp 219–234

    Google Scholar 

  • Hand SC, Menze MA, Toner M et al (2011a) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    CAS  PubMed  Google Scholar 

  • Hand SC, Menze MA, Borcar A et al (2011b) Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals. J Insect Physiol 57(5):584–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hand SC, Moore DS, Patil Y (2018) Challenges during diapause and anhydrobiosis: mitochondrial bioenergetics and desiccation tolerance. IUBMB Life 70(12):1251–1259

    CAS  PubMed  Google Scholar 

  • Haynes RC, Hammer UT (1978) The saline lakes of Saskatchewan IV. Primary production by phytoplankton in selected saline ecosystems. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 63(3):337–351

    Google Scholar 

  • HDR Engineering, Inc. (2015) Proposed compensatory mitigation and monitoring plan. Union Pacific Railroad Great Salt Lake causeway culvert closure and bridge construction project, SPK-2011-00755. https://deq.utah.gov/legacy/destinations/g/great-salt-lake/railroad-causeway/index.htm. Accessed 20 May 2019

  • Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8(1):3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst DB (1988) Comparative population ecology of Ephydra hians Say (Diptera: Ephydridae) at Mono Lake (California) and Abert Lake (Oregon). In: Melack JM (ed) Saline lakes. Springer, Dordrecht, pp 145–166

    Google Scholar 

  • Herbst DB (2001) Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. In: Melack JM, Jellison R, Herbst DB (eds) Saline lakes. Springer, Dordrecht, pp 209–219

    Google Scholar 

  • Herbst DB (2006) Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk. Wetlands 26(2):475–485

    Google Scholar 

  • Herbst DB, Prather M (2014) Owens Lake: from dustbowl to mosaic of salt water habitats. Lakeline 34:34–38

    Google Scholar 

  • Herbst DB, Medhurst RB, Roberts SW et al (2013a) Substratum associations and depth distribution of benthic invertebrates in saline Walker Lake, Nevada, USA. Hydrobiologia 700(1):61–72

    Google Scholar 

  • Herbst DB, Roberts SW, Medhurst RB (2013b) Defining salinity limits on the survival and growth of benthic insects for the conservation management of saline Walker Lake, Nevada, USA. J Insect Conserv 17(5):877–883

    Google Scholar 

  • Hisem D, Hrouzek P, Tomek P et al (2011) Cyanobacterial cytotoxicity versus toxicity to brine shrimp Artemia salina. Toxicon 57(1):76–83

    CAS  PubMed  Google Scholar 

  • Houde ED (1994) Differences between marine and freshwater fish larvae: implications for recruitment. ICES J Mar Sci 51(1):91–97

    Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73(3):724–732

    Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology, geology, physics, and chemistry, vol 1. Wiley, New York

    Google Scholar 

  • Jehl JR (2007) Why do eared grebes leave hypersaline lakes in autumn? Waterbirds 30(1):112–116

    Google Scholar 

  • Jehl JR, Boyd WS, Paul DS et al (2002) Massive collapse and rapid rebound: population dynamics of eared grebes (Podiceps nigricollis) during an ENSO event. The Auk 119(4):1162–1166

    Google Scholar 

  • Jellison R, Melack JM (1993) Algal photosynthetic activity and its response to meromixis in hypersaline Mono Lake, California. Limnol Oceanogr 38(4):818–837

    CAS  Google Scholar 

  • Jellison R, Melack JM (2001) Nitrogen limitation and particulate elemental ratios of seston in hypersaline mono Lake, California, USA. Hydrobiologia 466:1–12

    CAS  Google Scholar 

  • Jellison R, Miller LG, Melack JM et al (1993) Meromixis in hypersaliine Mono Lake, California. 2. Nitrogen fluxes. Limnol Oceanogr 38(5):1020–1039

    CAS  Google Scholar 

  • Johnson MT, Bell TG (2008) Coupling between dimethylsulfide emissions and the ocean–atmosphere exchange of ammonia. Environ Chem 5:259–267

    CAS  Google Scholar 

  • Kappas I, Abatzopoulos TJ, Van Hoa N et al (2004) Genetic and reproductive differentiation of Artemia franciscana in a new environment. Mar Biol 146(1):103–117

    Google Scholar 

  • Kelts LJ (1979) Ecology of a tidal marsh corixid, Trichocorixa verticalis (Insecta, Hemiptera). Hydrobiologia 64(1):37–57

    Google Scholar 

  • Khudyi O, Khuda L, Kushniryk O et al (2017) An effectiveness of Artemia nauplii enrichment with polyunsaturated fatty acids using a supplement easy DHA Selco. Acta Biol Univ Daugavp 17(2):169–183

    Google Scholar 

  • King AM, MacRae TH (2012) The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress. PLoS One 7(8):e43723. https://doi.org/10.1371/journal.pone.0043723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King AM, Toxopeus J, MacRae TH (2014) Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females. J Exp Biol 217(10):1719–1724

    PubMed  Google Scholar 

  • Klinger DH, Turnipseed M, Anderson JL et al (2013) Moving beyond the fished or farmed dichotomy. Mar Policy 38:369–374

    Google Scholar 

  • Kuehn D (2002) The brine shrimp industry in Utah. In: Gwynn WA (ed) Great Salt Lake, an overview of change. DNR Special Publication, Utah Department of Natural Resources, Utah Geological Survey, Salt Lake City, pp 259–264

    Google Scholar 

  • Kwast KE, Hand SC (1993) Regulatory features of protein synthesis in isolated mitochondria from Artemia embryos. Am J Phys 265(6):R1238–R1246

    CAS  Google Scholar 

  • LADWP (2015) LADWP annual Owens Valley report. Available via Inyowater.org. http://www.inyowater.org/wp-content/uploads/2012/12/2015-Combined-Files.pdf. Accessed 21 Jun 2019

  • Lavens P, Sorgeloos P (1987) The cryptobiotic state of Artemia cysts, its diapause deactivation and hatching: a review. In: Sorgeloos P, Bengtson DA, Decleir W, Jaspers E (eds) Artemia research and its applications, vol. E. Ecology, culturing, use in aquaculture. Universa Press, Wetteren, pp 27–63

    Google Scholar 

  • Lavens P, Sorgeloos, P (eds) (1996) Manual on the production and use of live food for aquaculture (No. 361). Food and Agriculture Organization (FAO), Rome, pp 79–195

    Google Scholar 

  • Lavens P, Sorgeloos P (2000) The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture 181(3–4):397–403

    Google Scholar 

  • Léger P, Bengtson DA, Simpson KL, Sorgeloos P (1986) The use and nutritional value of Artemia as a food source. Oceanogr Mar Biol Annu Rev 24:521–623

    Google Scholar 

  • Léger P, Bengtson DA, Sorgeloos P et al (1987) The nutritional value of Artemia: a review. In: Artemia research and its applications, vol 3, Ecology, culturing, use in aquaculture. Universa Press, Wetteren, pp 357–372

    Google Scholar 

  • Lemly AD (1993) Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ Monit Assess 28(1):83–100

    CAS  PubMed  Google Scholar 

  • Lemly AD (1997) Ecosystem recovery following selenium contamination in a freshwater reservoir. Ecotoxicol Environ Saf 36(3):275–281

    CAS  PubMed  Google Scholar 

  • Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59(1):44–56

    CAS  PubMed  Google Scholar 

  • Lenz PH (1987) Ecological studies on Artemia: a review. In: Sorgeloos P, Bengtson DA, Decleir W, Jaspers E (eds) Artemia research and its applications, vol 3. Ecology, culturing, use in aquaculture. Universa Press, Wetteren, pp 5–18

    Google Scholar 

  • Lenz PH, Browne RA (1991) Ecology of Artemia. In: Browne RA, Sorgeloos P, Trotman CAN (eds) Artemia biology. CRC, Boca Raton, FL, pp 237–253

    Google Scholar 

  • Li S, Chakraborty N, Borcar A et al (2012) Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci U S A 109(51):20859–20864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Amons R, Clegg JS, MacRae TH (1997) Molecular characterization of a small heat shock/alpha-crystallin protein in encysted Artemia embryos. J Biol Chem 272(30):19051–19058

    CAS  PubMed  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23(4):300–417

    Google Scholar 

  • Lindsay MR, Anderson C, Fox N et al (2017) Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology 15(1):131–145

    CAS  PubMed  Google Scholar 

  • Lindsay MR, Johnston RE, Baxter BK, Boyd ES (2019) Effects of salinity on microbialite-associated production in Great Salt Lake, Utah. Ecology 100(3):e02611

    PubMed  Google Scholar 

  • Litvinenko LI, Litvinenko AI, Boiko EG et al (2015) Artemia cyst production in Russia. Chin J Oceanol Limnol 33(6):1436–1450

    Google Scholar 

  • Loving BL, Waddell KM, Miller CW (2000) Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway, 1987-98. US Geological Survey, Water-Resources Investigations Report 00-4221

    Google Scholar 

  • Ma X, Jamil K, MacRae TH et al (2005) A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 51(1):15–28

    CAS  PubMed  Google Scholar 

  • MacIntyre S, Jellison R (2001) Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California. In: Melack JM, Jellison R, Herbst DB (eds) Saline lakes. Developments in hydrobiology, vol 162. Springer, Dordrecht, pp 13–29

    Google Scholar 

  • MacRae TH (2010) Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 67(14):2405–2424

    CAS  PubMed  Google Scholar 

  • MacRae TH (2015) Small heat shock proteins and diapause in the crustacean, Artemia franciscana. In: Tanguay RM (ed) The big book on small heat shock proteins. Springer, Cham, pp 563–578

    Google Scholar 

  • MacRae TH (2016) Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress Chaperones 21(1):9–18

    CAS  PubMed  Google Scholar 

  • Madison RJ (1970) Effects of a causeway on the chemistry of the brine in Great Salt Lake, Utah (No. 14). Utah Geological and Mineralogical Survey. Available via USGS. https://pubs.er.usgs.gov/publication/70179728. Accessed on 21 Jun 2019

  • Mahoney SA, Jehl JR (1985) Adaptations of migratory shorebirds to highly saline and alkaline lakes: Wilson’s Phalarope and American Avocet. Condor 87(4):520–527

    Google Scholar 

  • Mai MG, Engrola S, Morais S et al (2009) Co-feeding of live feed and inert diet from first-feeding affects Artemia lipid digestibility and retention in Senegalese sole (Solea senegalensis) larvae. Aquaculture 296(3–4):284–291

    Google Scholar 

  • Makridis P, Vadstein O (1999) Food size selectivity of Artemia franciscana at three developmental stages. J Plankton Res 21(11):2191–2201

    Google Scholar 

  • Makridis P, Fjellheim AJ, Skjermo J, Vadstein O (2000) Control of the bacterial flora of Brachionus plicatilis and Artemia franciscana by incubation in bacterial suspensions. Aquaculture 185:207–218

    Google Scholar 

  • Marcarelli AM, Wurtsbaugh WA, Griset O (2006) Salinity controls phytoplankton response to nutrient enrichment in the Great Salt Lake, Utah, USA. Can J Fish Aquat Sci 63(10):2236–2248

    CAS  Google Scholar 

  • Marden B, Richards D (2017) Multi-year investigations of complex interactions between cyanobacteria blooms and the food web in Farmington Bay, Great Salt Lake, Utah: a progress report of scientific findings. Wasatch Front Water Quality Council. Available via Researchgate. https://www.researchgate.net/publication/315694208_Mulit-year_Investigations_of_Complex_Interactions_Between_Cyanobacteria_Blooms_and_the_Food_Web_in_Farmington_Bay_Great_Salt_Lake_Utah. Accessed 21 Jun 2019

  • Marden B, Van Stappen G, Musaev A et al (2012) Assessment of the production potential of an emerging Artemia population in the Aral Sea, Uzbekistan. J Mar Syst 92(1):42–52

    Google Scholar 

  • Marden B, Miller T, Richards D (2013) Factors influencing cyanobacteria blooms in Farmington Bay, Great Salt Lake, Utah. Progress report of scientific findings. Wasatch Front Water Quality Council. Available via Researchgate. https://www.researchgate.net/publication/305488678_Factors_Influencing_Cyanobacteria_Blooms_in_Farmington_Bya_Great_Salt_Lake_Utah. Accessed 21 Jun 2019

  • Marino R, Howarth RW, Shamess J, Prepas E (1990) Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta. Limnol Oceanogr 35(2):245–259

    CAS  Google Scholar 

  • Martins CIM, Eding EH, Verdegem MC et al (2010) New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquac Eng 43(3):83–93

    Google Scholar 

  • McCulley EB (2014) Factors affecting the toxic cyanobacteria Nodularia spumigena in Farmington Bay of Great Salt Lake, Utah. Available via Utah State University. https://digitalcommons.usu.edu/etd/4014/. Accessed 21 June 2019

  • McCulley EB, Wurtsbaugh W (2014) Factors affecting the spatial and temporal variability of Nodularia blooms in Farmington Bay, Great Salt Lake, Utah. Available via Utah State University. https://digitalcommons.usu.edu/runoff/2014/2014Abstracts/55/. Accessed 21 Jun 2019

  • Melack JM, Jellison R (1998) Limnological conditions in Mono Lake: contrasting monomixis and meromixis in the 1990s. Hydrobiologia 384:21–39

    Google Scholar 

  • Melack JM, Jellison R, MacIntyre S et al (2017) Mono Lake: plankton dynamics over three decades of meromixis and monomixis. In: Gulati RD, Zadereev ES, Degermendzhi AG (eds) Ecology of meromictic lakes. Springer International Publishing, Cham, pp 325–352

    Google Scholar 

  • Meuser JE, Baxter BK, Spear JR et al (2013) Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microb Ecol 66(2):268–280

    CAS  PubMed  Google Scholar 

  • Micklin P (2007) The Aral Sea Disaster. Annu Rev Earth Planet Sci 35:47–72

    CAS  Google Scholar 

  • Micklin P (2010) The past, present, and future Aral Sea. Lakes Reserv Res Manag 15(3):193–213

    Google Scholar 

  • Micklin P, Aladin NV, Plotnikov I (eds) (2016) Aral Sea. Springer, Berlin

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Miller D, McLennan AG (1988) The heat shock response of the cryptobiotic brine shrimp Artemia—II. Heat shock proteins. J Therm Biol 13(3):125–134

    CAS  Google Scholar 

  • Moffitt CM, Cajas-Cano L (2014) Blue growth: the 2014 FAO state of world fisheries and aquaculture. Fisheries 39(11):552–553

    Google Scholar 

  • Montague CL, Fey WR, Gillespie DM (1982) A causal hypothesis explaining predator-prey dynamics in Great Salt Lake, Utah. Ecol Model 17(3):243–270

    Google Scholar 

  • Moore JN (2016) Recent desiccation of western Great Basin saline lakes: lessons from Lake Abert, Oregon, USA. Sci Total Environ 554:142–154

    PubMed  Google Scholar 

  • Moore DS, Hansen R, Hand SC (2016) Liposomes with diverse compositions are protected during desiccation by LEA proteins from Artemia franciscana and trehalose. Biochim Biophys Acta Biomembr 1858(1):104–115

    CAS  Google Scholar 

  • Morris D, Lewis W (1988) Phytoplankton nutrient limitation in Colorado mountain lakes. Freshw Biol 20:315–327

    Google Scholar 

  • Murphy TP, Brownlee BG (1981) Ammonia volatilization in a hypereutrophic Prairie lake. Can J Fish Aquat Sci 38:1035–1039

    CAS  Google Scholar 

  • Myers RA, Hutchings JA, Barrowman NJ (1997) Why do fish stocks collapse? The example of cod in Atlantic Canada. Ecol Appl 7(1):91–106

    Google Scholar 

  • Naftz D (2017) Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA. Aquat Geochem 23(3):199–216

    CAS  Google Scholar 

  • Naftz D, Angeroth C, Kenney T et al (2008) Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA. Appl Geochem 23(6):1731–1744

    CAS  Google Scholar 

  • Naftz D, Fuller C, Cederberg J et al (2009) Mercury inputs to Great Salt Lake, Utah: reconnaissance-phase results. Available via Digitalcommons USU. https://digitalcommons.usu.edu/nrei/vol15/iss1/5/. Accessed 21 Jun 2019

  • Nambu Z (2004) Influence of photoperiod and temperature on reproductive mode in the brine shrimp, Artemia franciscana. J Exp Zool 301A:542–546

    Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH et al (2000) Effect of aquaculture on world fish supplies. Nature 405(6790):1017

    CAS  PubMed  Google Scholar 

  • Nejstgaard JC, Frischer ME, Simonelli P et al (2008) Quantitative PCR to estimate copepod feeding. Mar Biol 153:565–577

    CAS  Google Scholar 

  • Nunes BS, Carvalho FD, Guilhermino LM et al (2006) Use of the genus Artemia in ecotoxicity testing. Environ Pollut 144(2):453–462

    CAS  PubMed  Google Scholar 

  • Ogata EM, Wurtsbaugh WA, Smith TN et al (2017) Bioassay analysis of nutrient and Artemia franciscana effects on trophic interactions in the Great Salt Lake, USA. Hydrobiologia 788(1):1–16

    Google Scholar 

  • Ohlendorf HM, DenBleyker J, Moellmer WO, Miller T (2009) Development of a site-specific standard for selenium in open waters of Great Salt Lake, Utah. Natural Resources and Environmental Issues 15, Article 4. https://digitalcommons.usu.edu/nrei/vol15/iss1/4. Accessed 21 Jun 2019

  • Okun N, Brasil J, Attayde JL et al (2008) Omnivory does not prevent trophic cascades in pelagic food webs. Freshw Biol 53(1):129–138

    Google Scholar 

  • Paerl HW, Crocker KM, Prufert LE (1987) Limitation of N2 fixation in coastal marine waters: relative importance of molybdenum, iron, phosphorus, and organic matter availability. Limnol Oceanogr 32(3):525–536

    CAS  Google Scholar 

  • Paerl HW, Joyner JJ, Joyner AR et al (2008) Co-occurrence of dinoflagellate and cyanobacterial harmful algal blooms in Southwest Florida coastal waters: dual nutrient (N and P) input controls. Mar Ecol Prog Ser 371:143–153

    CAS  Google Scholar 

  • Paerl HW, Scott TJ, McCarthy MJ et al (2016) It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ Sci Technol 50(20):10805–10813

    CAS  PubMed  Google Scholar 

  • Patil YN, Marden B, Brand MD et al (2012) Metabolic downregulation and inhibition of carbohydrate catabolism during diapause in embryos of Artemia franciscana. Physiol Biochem Zool 86(1):106–118

    PubMed  Google Scholar 

  • Paul DS, Manning AE (2002) Great Salt Lake Waterbird survey five-year report (1997–2001). Publication Number 08-38. Utah Division of Wildlife Resources, Salt Lake City

    Google Scholar 

  • Peterson C, Gustin M (2008) Mercury in the air, water and biota at the Great Salt Lake (Utah, USA). Sci Total Environ 405(1–3):255–268

    CAS  PubMed  Google Scholar 

  • Porcella DB, Holman JA (1972) Nutrients, algal growth, and culture of brine shrimp in the southern Great Salt Lake. The Great Salt Lake and Utah’s water resources. Utah Water Research Laboratory, Logan, UT, pp 142–155

    Google Scholar 

  • Porter KG (1973) Selective grazing and differential digestion of algae by zooplankton. Nature 244:179–180

    Google Scholar 

  • Ptacnik R, Andersen T, Tamminen T (2010) Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation. Ecosystems 13:1201–1214

    CAS  Google Scholar 

  • Puhlev GN, Brown DR, Mansbridge J et al (2000) Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 18(2):168–171

    PubMed  Google Scholar 

  • Qiu Z, MacRae TH (2008) ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 411(3):605–611

    CAS  PubMed  Google Scholar 

  • Qiu Z, Viner RI, MacRae TH et al (2004) A small heat shock protein from Artemia franciscana is phosphorylated at serine 50. Biochim Biophys Acta 1700(1):75–83

    CAS  PubMed  Google Scholar 

  • Radzikowski J (2013) Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J Plankton Res 35(4):707–723

    Google Scholar 

  • Rai AK, Abraham G (1993) Salinity tolerance and growth analysis of the cyanobacterium Anabaena doliolum. Bull Environ Contam Toxicol 51(5):724–731

    CAS  PubMed  Google Scholar 

  • Redfield AC (1958) The biological control of the chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Reeve MR (1963a) The filter feeding of Artemia: I. In pure cultures of plant cells. J Exp Biol 40:195–205

    Google Scholar 

  • Reeve MR (1963b) Growth efficiency in Artemia under laboratory conditions. Biol Bull 125(1):133–145

    Google Scholar 

  • Reynolds JA, Hand SC (2004) Differences in isolated mitochondria are insufficient to account for respiratory depression during diapause in Artemia franciscana embryos. Physiol Biochem Zool 77(3):366–377

    CAS  PubMed  Google Scholar 

  • Ricker WE (1954) Stock and recruitment. J Fish Res Board Can 11:559–623

    Google Scholar 

  • Riera J, Voss PR et al (2001) Nature, society and history in two contrasting landscapes in Wisconsin, USA: interactions between lakes and humans during the twentieth century. Land Use Policy 18(1):41–51

    Google Scholar 

  • Roberts AJ (2013a) Winter waterbird ecology on the Great Salt Lake, Utah, and interactions with commercial harvest of brine shrimp cysts. Dissertation, Utah State University. https://digitalcommons.usu.edu/etd/2042

  • Roberts AJ (2013b) Avian diets in a saline ecosystem: Great Salt Lake, Utah, USA. Hum Wildl Interact 7(1):15

    Google Scholar 

  • Roberts AJ, Conover MR (2013) Eared grebe diet on Great Salt Lake, Utah, and competition with the commercial harvest of brine shrimp cysts. J Wildl Manag 77(7):1380–1385

    Google Scholar 

  • Roberts AJ, Conover MR (2014) Diet and body mass of ducks in the presence of commercial harvest of brine shrimp cysts in the Great Salt Lake, Utah. J Wildl Manag 78(7):1197–1205

    Google Scholar 

  • Roo J, Hernandez-Cruz C, Mesa-Rodriguez M et al (2019) Effect of increasing n-3 HUFA content in enriched Artemia on growth, survival and skeleton anomalies occurrence of greater amberjack Seriola dumerili larvae. Aquaculture 1:651–659

    Google Scholar 

  • Rueter JG, Petersen RR (1987) Micronutrient effects on cyanobacterial growth and physiology. N Z J Mar Freshw Res 21(3):435–445

    Google Scholar 

  • Saint-Armand P, Mathews LA, Gaines C et al (1986) Dust storms from Owens and Mono valleys, California (No. NWC-TP-6731). Available via Naval Weapons Center. https://apps.dtic.mil/dtic/tr/fulltext/u2/a226243.pdf. Accessed 21 Jun 2019

  • Salimi J, Maknoon R, Meijerink S (2019) Designing institutions for watershed management: a case study of the Urmia Lake Restoration National Committee. Water Alt 12(2):2

    Google Scholar 

  • Sanchez-Saavedra MP, Voltolina D (1995) The effect of different light quality on the food value of the diatom Chaetocerous sp. for Artemia franciscan Kellogg. Riv Ital Acquacolt 20:135–138

    Google Scholar 

  • Sarabia R, Del Ramo J, Varo I et al (2002) Comparing the acute response to cadmium toxicity of nauplii from different populations of Artemia. Environ Toxicol Chem 21(2):437–444

    CAS  PubMed  Google Scholar 

  • Scherer NM, Gibbons HL, Stoops KB et al (1995) Phosphorus loading of an urban lake by bird droppings. Lake and Reservoir Manage 11(4):317–327

    Google Scholar 

  • Schindler DW, Holmgren SK (1971) Primary production and phytoplankton in the Experimental Lakes Area, northwestern Ontario, and other low-carbonate waters, and a liquid scintillation method for determining 14C activity in photosynthesis. J Fish Board Canada 28(2):189–201

    Google Scholar 

  • Sherwood AR, Presting GG (2007) Universal primers amplify a 23S rDNA plastid market in eukaryotic algae and cyanobacteria. J Phycol 43:605–608

    Google Scholar 

  • Sherwood AR, Dittbern M, Johnston E et al (2016) A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko’olau mountain range on the island of O’ahu, Hawai’i. J Phycol 53:437. https://doi.org/10.1111/jpy.12502

    Article  CAS  Google Scholar 

  • Shirakashi R, Kostner CM, Muller KJ et al (2002) Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 189:45–54

    CAS  PubMed  Google Scholar 

  • Simonelli P, Troedsson C, Nejstgaard JC et al (2009) Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J Plankton Res 31(12):1465–1474

    CAS  Google Scholar 

  • Simonis JL (2013a) Predator ontogeny determines trophic cascade strength in freshwater rock pools. Ecosphere 4(5):art62

    Google Scholar 

  • Simonis JL (2013b) Prey (Moina macrocopa) population density drives emigration rate of its predator (Trichocorixa verticalis) in a rock-pool metacommunity. Hydrobiologia 715(1):19–27

    Google Scholar 

  • Skorupa JP (1998) Selenium poisoning of fish and wildlife in nature: lessons from twelve real-world examples. In: Frankenberger WT Jr, Engberg RA (eds) Environmental chemisty of selenium, vol 64. Marcel Dekker, New York, pp 315–354

    Google Scholar 

  • Skoultchi AI, Morowitz HJ (1964) Information storage and survival of biological systems at temperatures near absolute zero. Yale J Biol Med 37(2):158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207

    PubMed  Google Scholar 

  • Smith DG, Croker GF et al (1995) Human perception of water appearance: 2. Colour judgment, and the influence of perceptual set on perceived water suitability for use. N Z J Mar Freshw Res 29(1):45–50

    Google Scholar 

  • Smith VH, Joye SB, Howarth RW (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51(1part2):351–355

    CAS  Google Scholar 

  • Sorgeloos P (1980) The use of the brine shrimp Artemia in aquaculture. In: Persoone G, Sorgeloos P, Roels O, Jaspers E (eds) The brine shrimp Artemia, vol 3. Universa Press, Wetteren, pp 25–46

    Google Scholar 

  • Sorgeloos P, Kulasekarapandian S (1984) Production and use of Artemia in Aquaculture. In: Silas EG, Rengarajan K (eds) CMFRI Special Publication Number 15

    Google Scholar 

  • Sorgeloos P, Tackaert W (1991) Roles and potentials of Artemia in coastal salt works. In Proceedings of the international symposium on biotechnology of salt ponds, International symposium on biotechnology of saltponds, Sept 18–21, 1990, Tanggu, Tianjin, pp 69–77

    Google Scholar 

  • Sorgeloos P, Baeza-Mesa M, Benijts F et al (1975) Research on the culturing of the brine shrimp Artemia salina L. at the State University of Ghent (Belgium). In: 10th European symposium on marine biology, Ostend, Belgium, vol 1, pp 472–495

    Google Scholar 

  • Sorgeloos P, Remiche-Van Der Wielen C, Persoone G (1978) The use of Artemia nauplii for toxicity tests—a critical analysis. Ecotoxicol Environ Saf 2(3–4):249–255

    CAS  PubMed  Google Scholar 

  • Sorgeloos P, Lavens P, Leger P et al (1991) State of the art in larviculture of fish and shellfish. Available via FAO-UN. http://agris.fao.org/agris-search/search.do?recordID=AV20120151346. Accessed 21 Jun 2019

  • Sorgeloos P, Dhert P, Condreva P (2001) Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 20:147–159

    Google Scholar 

  • Stephens DW (1974) A summary of biological investigations concerning the Great Salt Lake, Utah (1861-1973). West North Am Nat 34(3):221–229

    Google Scholar 

  • Stephens DW (1990) Changes in lake levels, salinity, and the biological community of Great Salt Lake (Utah, USA), 1847-1987. Hydrobiologia 197:139–146

    CAS  Google Scholar 

  • Stephens D (1998) Salinity-induced changes in the aquatic ecosystem of Great Salt Lake, Utah. Available via AAPG/Datapages. http://archives.datapages.com/data/uga/data/069/069001/1_ugs690001.htm. Accessed 21 Jun 2019

  • Stephens DW, Birdsey PW (2002) Population dynamics of the brine shrimp, Artemia franciscana, Great Salt Lake, and regulation of commercial shrimp harvest. In: Gwynn JW (ed) Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City, pp 327–336

    Google Scholar 

  • Stephens DW, Gillespie DM (1972) Community structure and ecosystem analysis of the Great Salt Lake. In: The Great Salt Lake and Utah’s Water Resources, pp 66–72

    Google Scholar 

  • Stephens DW, Gillespie DM (1976) Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnol Oceanogr 21(1):74–87

    CAS  Google Scholar 

  • Steven B, McCann S, Ward NL (2012) Pyrosequencing of plastid 23S rRNA genes reveals diverse and dynamic cyanobacterial and algal populations in two eutrophic lakes. FEMS Microb Ecol 82:607–615

    CAS  Google Scholar 

  • Sturm PA, Sanders GC, Allen KA (1980) The brine shrimp industry on the Great Salt Lake. In: Gwynn JW (ed) Great Salt Lake: a scientific, historical and economic overview. Utah Geological and Mineral Survey, Salt Lake City, pp 243–248

    Google Scholar 

  • Sun Y, Mansour M, Crack JA et al (2004) Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J Biol Chem 279(38):39999–40006

    CAS  PubMed  Google Scholar 

  • Tanguay JA, Reyes RC, Clegg JS (2004) Habitat diversity and adaptation to environmental stress in encysted embryos of the crustacean Artemia. J Biosci 29(4):489–501

    PubMed  Google Scholar 

  • Toi HT, Boeckx P, Sorgeloos P et al (2013) Bacteria contribute to Artemia nutrition in algae-limited conditions: a laboratory study. Aquaculture 388(391):1–7

    Google Scholar 

  • Torrentera L, Dodson SI (2004) Ecology of the brine shrimp Artemia in the Yucatan, Mexico, Salterns. J Plankton Res 26(6):617–624

    Google Scholar 

  • Triantaphyllidis GV, Poulopoulou K, Abatzopoulos TJ et al (1995) International study on Artemia XLIX. Salinity effects on survival, maturity, growth, biometrics, reproductive and lifespan characteristics of a bisexual and a parthenogenetic population of Artemia. Hydrobiologia 302(3):215–227

    Google Scholar 

  • Tyson R (1997) California under pressure to curb nation’s largest PM source. Environ Sci Technol 31(11):504A–504A

    CAS  Google Scholar 

  • Utah DEQ (2014) Core component 1: developing aquatic life criteria for priority pollutants. A Great Salt Lake Water Quality Strategy. Available via Utah DEQ. https://documents.deq.utah.gov/water-quality/standards-technical-services/gsl-website-docs/gsl-wq-strategy/DWQ-2019-000421.pdf. Accessed 12 May 2019

  • Vadeboncoeur Y, Vander Zanden MJ, Lodge DM (2002) Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience 52(1):44–54

    Google Scholar 

  • Valdes C, Black FJ, Stringham B et al (2017) Total mercury and methylmercury response in water, sediment, and biota to destratification of the Great Salt Lake, Utah, United States. Environ Sci Technol 51(9):4887–4896

    CAS  PubMed  Google Scholar 

  • Van de Meutter F, Trekels H, Green AJ (2010) The impact of the North American waterbug Trichocorixa verticalis (Fieber) on aquatic macroinvertebrate communities in southern Europe. Fundam Appl Limnol/Archiv für Hydrobiologie 177(4):283–292

    Google Scholar 

  • Van Den Branden C, Bernaerts F, Decleir W (1980) The respiratory physiology of adult Artemia salina L. in relation to oxygen availability. In: Gilles R (ed) Animals and environmental fitness: physiological and biochemical aspects of adaptation and ecology, vol 2. Pergamon, Oxford, pp 37–38

    Google Scholar 

  • Van Stappen G (1996) Introduction, biology and ecology of Artemia. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of live food for aquaculture, FAO Fisheries Technical Paper, No. 361. Rome, pp 79–129

    Google Scholar 

  • Van Stappen G (2002) Zoogeography. In: Abatzopoulos TJ, Beadmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology, vol 1. Kluwer Academic, London, pp 171–224

    Google Scholar 

  • Van Stappen G (2008) Artemia biodiversity in Central and Eastern Asia. Ghent University Press, Ghent, pp 1–82

    Google Scholar 

  • Van Stappen G, Fayazi G, Sorgeloos P (2001) International study on Artemia LXIII. Field study of the Artemia urmiana (Günther, 1890) population in Lake Urmiah, Iran. In: Melack JM, Jellison R, Herbst DB (eds) Saline lakes. Developments in hydrobiology, vol 162. Springer, Dordrecht, pp 133–143

    Google Scholar 

  • Vanhaecke P, Persoone G, Claus C et al (1981) Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol Environ Saf 5(3):382–387

    CAS  PubMed  Google Scholar 

  • Vanhaecke P, Siddall SE, Sorgeloos P (1984) International study on Artemia. XXXII. Combined effects of temperature and salinity on the survival of Artemia of various geographical origin. J Exp Mar Biol Ecol 80(3):259–275

    Google Scholar 

  • Varo N, Green AJ, Sánchez MI et al (2011) Behavioural and population responses to changing availability of Artemia prey by moulting black-necked grebes, Podiceps nigricollis. Hydrobiologia 664(1):163–171

    Google Scholar 

  • Vest JL, Conover MR (2011) Food habits of wintering waterfowl on the Great Salt Lake, Utah. Waterbirds 34(1):40–51

    Google Scholar 

  • Vest JL, Conover MR, Perschon C et al (2009) Trace element concentrations in wintering waterfowl from the Great Salt Lake, Utah. Arch Environ Contam Toxicol 56(2):302–316

    CAS  PubMed  Google Scholar 

  • Viciano E, Monroig O, Salvador A et al (2013) Enriching Artemia nauplii with a high DHA-containing lipid emulsion: search for an optimal protocol. Aquac Res 46(5):1066–1077

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13(2):87–115

    Google Scholar 

  • von Rohden C, Ilmberger J, Boehrer B (2009) Assessing groundwater coupling and vertical exchange in a meromictic mining lake with an SF6-tracer experiment. J Hydrol 372(1–4):102–108

    Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J et al (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    PubMed  Google Scholar 

  • Walsby AE, Van Rijn J, Cohen Y (1983) The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp. nov., in Solar Lake. Proc R Soc Lond B 217:417–447

    Google Scholar 

  • Wang Z, Asem A, Sun S (2017) Coupled effects of photoperiod, temperature, and salinity on diapause induction of the parthenogenetic Artemia (Crustacea: Anostraca) from Barkol Lake, China. North West J Zool 13(1):12–17

    Google Scholar 

  • Warner AH, Finamore FJ (1967) Nucleotide metabolism during brine shrimp embryogenesis. J Biol Chem 242(8):1933–1937

    CAS  PubMed  Google Scholar 

  • Watanabe T (1993) Importance of docosahexaenoic acid in marine larval fish. J World Aquacult Soc 24(2):152–161

    Google Scholar 

  • Watters C, Iwamura S, Ako H et al (2012) Nutrition considerations in aquaculture: the importance of omega-3 fatty acids in fish development and human health. College of Tropical Agriculture and Human Resources, University of Hawai’I at Manoa, FN-11

    Google Scholar 

  • Wear RG, Haslett SJ (1986) Effects of temperature and salinity on the biology of Artemia fransiscana Kellogg from Lake Grassmere, New Zealand. 1. Growth and mortality. J Exp Mar Biol Ecol 98(1–2):153–166

    Google Scholar 

  • Weiss KR (2018) Iran’s Tarnished Gem. National Geographic. https://www.nationalgeographic.com/photography/proof/2018/04/lake-urmia-iran-drought/. Accessed 23 April 2019

  • WHSRN (2019) Great Salt Lake. https://whsrn.org/whsrn_sites/great-salt-lake/. Accessed 16 May 2019

  • Williams WD, Boulton AJ, Taaffe RG (1990) Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197(1):257–266

    CAS  Google Scholar 

  • Willsie JK, Clegg JS (2001) Nuclear p26, a small heat shock/alpha-crystallin protein, and its relationship to stress resistance in Artemia franciscana embryos. J Exp Biol 204:2239–2350

    Google Scholar 

  • Wine ML, Rimmer A, Laronne JB (2019) Agriculture, diversions, and drought shrinking Galilee Sea. Sci Total Environ 651:70–83

    CAS  PubMed  Google Scholar 

  • Wirick CD (1972) Dunaliella-Artemia plankton community of the Great Salt Lake, Utah. Dissertation, University of Utah

    Google Scholar 

  • Wunder MB, Jehl JR, Stricker CA (2012) The early bird gets the shrimp: confronting assumptions of isotopic equilibrium and homogeneity in a wild bird population. J Anim Ecol 81(6):1223–1232

    PubMed  Google Scholar 

  • Wurtsbaugh WA (1988) Iron, molybdenum and phosphorus limitation of N2 fixation maintains nitrogen deficiency of plankton in the Great Salt Lake drainage (Utah, USA). SIL Proceedings 1922-2010 23(1):121–130. https://doi.org/10.1080/03680770.1987.11897913

  • Wurtsbaugh WA (1992) Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89(2):168–175

    PubMed  Google Scholar 

  • Wurtsbaugh WA (2007) Preliminary analyses of selenium bioaccumulation in benthic food webs of the Great Salt Lake, Utah. In: Final Report: Development of a Selenium Standard for the Open Waters of the Great Salt Lake. Utah Department of Environmental Quality. https://deq.utah.gov/legacy/destinations/g/great-salt-lake/steering-committee/docs/2008/03Mar/Preliminary_Analyses_of_Selenium_Bioaccumulation_in_Benthic_Food_Webs_of_the_GSL_FINAL_REPORT.pdf. Accessed 21 Jun 2019

  • Wurtsbaugh WA (2012) Paleolimnological analysis of the history of metals contamination in the Great Salt Lake, Utah. Watershed Sciences Faculty Publications. Paper 556. https://digitalcommons.usu.edu/wats_facpub/556. Accessed 21 Jun 2019

  • Wurtsbaugh WA (2014) Management of the Great Salt Lake ecosystem: water, economic values and competing interests. Watershed Sciences Faculty Publications. Paper 594. https://digitalcommons.usu.edu/wats_facpub/594. Accessed 21 Jun 2019

  • Wurtsbaugh WA, Berry TS (1990) Cascading effects of decreased salinity on the plankton, chemistry, and physics of the Great Salt Lake (Utah). Can J Fish Aquat Sci 47:100–109

    CAS  Google Scholar 

  • Wurtsbaugh WA, Gliwicz ZM (2001) Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. In: Melack JM, Jellison R, Herbst DB (eds) Saline lakes. Springer, Dordrecht, pp 119–132

    Google Scholar 

  • Wurtsbaugh WA, Horne AJ (1983) Iron in eutrophic Clear Lake, California: its importance for algal nitrogen fixation and growth. Can J Fish Aquat Sci 40(9):1419–1429

    CAS  Google Scholar 

  • Wurtsbaugh WA, Marcarelli AM (2004) Analysis of phytoplankton nutrient limitation in Farmington Bay and the Great Salt Lake. Report to the Central Davis County Sewer Improvement District. https://digitalcommons.usu.edu/wats_facpub/542/. Accessed 21 Jun 2019

  • Wurtsbaugh WA, Marcarelli A, Gross D (2004) Eutrophication in Farmington Bay: an Urban Embayment of the Great Salt Lake. Paper presented at the Utah State University water initiative spring runoff conference, Utah State University, Logan, 25–26 March 2004

    Google Scholar 

  • Zadereev E (2018) Salt lakes, surrounding environments and environmental management. In: Introduction to salt lake sciences. Science Press, Beijing, pp 172–179

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington D.C.

    Google Scholar 

  • Clegg JS (1978) Hydration-dependent metabolic transitions and the state of cellular water in Artemia cysts. In: Dry biological systems. Academic Press, New York, pp 117-153

    Google Scholar 

  • Clegg JS (1997) Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J Exp Biol 200(3):467-475

    Google Scholar 

  • Herbst DB, Prather M (2014) Owens Lake: from dustbowl to mosaic of salt water habitats. Lakeline 34:34-38

    Google Scholar 

  • Moore DS, Hansen R, Hand SC (2016) Liposomes with diverse compositions are protected during desiccation by LEA proteins from Artemia franciscana and trehalose. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858 (1):104-115

    Google Scholar 

  • Wurtsbaugh WA, Gardberg J, Izdepski C (2011) Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA). Sci Total Environ 409(20):4425–4434

    CAS  PubMed  Google Scholar 

  • Wurtsbaugh WA, Marcarelli AM, Boyer GL (2012) Eutrophication and metal concentrations in three bays of the Great Salt Lake (USA). Final report to the Utah Division of Water Quality. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1548&context=wats_facpub. Accessed 21 Jun 2019

  • Wurtsbaugh WA, Gardberg J, Izdepski C (2011) Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA). Science of the total environment 409(20):4425-4434

    Google Scholar 

  • Wurtsbaugh WA, Miller C, Null SE et al (2017) Decline of the world’s saline lakes. Nat Geosci 10:816–821

    CAS  Google Scholar 

  • Zadereev E (2018) Salt lakes, surrounding environments and environmental management. In: Introduction to salt lake sciences. Science Press, Beijing, pp 172-179

    Google Scholar 

  • Zeinoddini M, Bakhtiari A, Ehteshami M (2015) Long-term impacts from damming and water level manipulation on flow and salinity regimes in Lake Urmia, Iran. Water Environ J 29(1):71–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bosteels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marden, B., Brown, P., Bosteels, T. (2020). Great Salt Lake Artemia: Ecosystem Functions and Services with a Global Reach. In: Baxter, B., Butler, J. (eds) Great Salt Lake Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-40352-2_7

Download citation

Publish with us

Policies and ethics