Skip to main content

Heterogeneity and Subgroup Analysis in Network Meta-Analysis

  • Chapter
  • First Online:
Design and Analysis of Subgroups with Biopharmaceutical Applications

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

Abstract

Comprehensive healthcare decision-making requires a comparisons of the relevant competing treatment options for a particular disease state. Randomized controlled trials (RCTs) are considered the most credible evidence to obtain insight into the relative treatment effects of a medical intervention. However, an individual RCT rarely includes all competing interventions of interest. Typically, the evidence base consists of multiple RCTs where each of the available studies compares a subset of all the competing interventions of interest. If each of these trials has at least one intervention in common with another trial such that the evidence base can be represented with one connected network, a network meta-analysis (NMA) can provide relative treatment effects between all competing interventions of interest (see the network diagram in Fig. 18.1) (Ades 2003; Bucher et al. 1997; Dias et al. 2013a, 2018a; Hutton et al. 2015; Jansen et al. 2011, 2014; Lumley 2002; Lu and Ades 2004; Salanti et al. 2008). A NMA can be considered a generalization of conventional pairwise meta-analysis (Dias et al. 2018b, c). Rather than synthesizing the findings of multiple RCTs each comparing the same intervention with the same control, with a NMA we are simultaneously synthesizing the findings of multiple pair-wise comparisons across a range of interventions and obtaining estimates of relative treatment effects between all competing interventions based on direct and/or indirect evidence. Even if there was a conclusive RCT that included all competing interventions of interest, the available RCTs comparing a subset of the interventions provide relevant evidence as well. A NMA allows to estimate relative treatment effects based on the totality of the RCT evidence base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ades AE (2003) A chain of evidence with mixed comparisons: models for multi-parameter synthesis and consistency of evidence. Stat Med 22(19):2995–3016

    Article  Google Scholar 

  • Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI (2002) Individual patient-versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med 21(3):371–387

    Article  Google Scholar 

  • Bucher HC, Guyatt GH, Griffith LE, Walter SD (1997) The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 50(6):683–691

    Article  Google Scholar 

  • Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ (2009) Addressing between-study heterogeneity and inconsistency in mixed treatment comparisons: application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillation. Stat Med 28(14):1861–1881

    Article  MathSciNet  Google Scholar 

  • Cope S, Capkun-Niggli G, Gale R, Lassen C, Owen R, Ouwens MJ, Bergman G, Jansen JP (2012) Efficacy of once-daily indacaterol relative to alternative bronchodilators in COPD: a patient-level mixed treatment comparison. Value Health 15(3):524–533

    Article  Google Scholar 

  • Debray TP, Schuit E, Efthimiou O, Reitsma JB, Ioannidis JP, Salanti G, Moons KG, GetReal Workpackage (2018) An overview of methods for network meta-analysis using individual participant data: when do benefits arise? Stat Methods Med Res 27(5):1351–1364

    Article  MathSciNet  Google Scholar 

  • Dias S, Sutton AJ, Ades AE, Welton NJ (2013a) Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Mak 33(5):607–617

    Article  Google Scholar 

  • Dias S, Sutton AJ, Welton NJ, Ades AE (2013b) Evidence synthesis for decision making 3: heterogeneity—subgroups, meta-regression, bias, and bias-adjustment. Med Decis Mak 33(5):618–640

    Article  Google Scholar 

  • Dias S, Ades AE, Welton NJ, Jansen JP, Sutton AJ (2018a) Introduction to evidence synthesis. In: Network meta-analysis for decision-making. John Wiley, New York, pp 1–17

    Chapter  Google Scholar 

  • Dias S, Ades AE, Welton NJ, Jansen JP, Sutton AJ (2018b) The core model. In: Network meta-analysis for decision-making. John Wiley, New York, pp 19–58

    Chapter  Google Scholar 

  • Dias S, Ades AE, Welton NJ, Jansen JP, Sutton AJ (2018c) Validity of network meta-analysis. In: Network meta-analysis for decision-making. John Wiley, New York, pp 351–374

    Chapter  Google Scholar 

  • Dias S, Ades AE, Welton NJ, Jansen JP, Sutton AJ (2018d) Meta-regression for relative treatment effects. In: Network meta-analysis for decision-making. John Wiley, New York, pp 227–271

    Chapter  Google Scholar 

  • Donegan S, Williamson P, D'Alessandro U, Garner P, Smith CT (2013) Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: individual patient data may be beneficial if only for a subset of trials. Stat Med 32(6):914–930

    Article  MathSciNet  Google Scholar 

  • Donegan S, Welton NJ, Tudur Smith C, D'Alessandro U, Dias S (2017) Network meta-analysis including treatment by covariate interactions: consistency can vary across covariate values. Res Synth Methods 8(4):485–495

    Article  Google Scholar 

  • Donegan S, Dias S, Welton NJ (2019) Assessing the consistency assumptions underlying network meta-regression using aggregate data. Res Synth Methods 10(2):207–224. https://doi.org/10.1002/jrsm.1327

    Article  Google Scholar 

  • Efthimiou O, Debray TP, van Valkenhoef G, Trelle S, Panayidou K, Moons KG et al (2016) GetReal in network meta-analysis: a review of the methodology. Res Synth Methods 7(3):236–263

    Article  Google Scholar 

  • Espinoza MA, Manca A, Claxton K, Sculpher MJ (2014) The value of heterogeneity for cost-effectiveness subgroup analysis: conceptual framework and application. Med Decis Mak 34(8):951–964

    Article  Google Scholar 

  • Greenland S (2002) A review of multilevel theory for ecologic analyses. Stat Med 21(3):389–395

    Article  Google Scholar 

  • Henderson NC, Louis TA, Wang C, Varadhan R (2016) Bayesian analysis of heterogeneous treatment effects for patient-centered outcomes research. Health Serv Outcomes Res Methodol 16(4):213–233

    Article  Google Scholar 

  • Higgins JP, Thompson SG (2004) Controlling the risk of spurious findings from meta-regression. Stat Med 23(11):1663–1682

    Article  Google Scholar 

  • Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C et al (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162(11):777–784

    Article  Google Scholar 

  • Jackson C, Best N, Richardson S (2006) Improving ecological inference using individual-level data. Stat Med 25(12):2136–2159

    Article  MathSciNet  Google Scholar 

  • Jackson C, Best AN, Richardson S (2008) Hierarchical related regression for combining aggregate and individual data in studies of socio-economic disease risk factors. J R Stat Soc A Stat Soc 171(1):159–178

    MathSciNet  Google Scholar 

  • Jansen JP (2012) Network meta-analysis of individual and aggregate level data. Res Synth Methods 3(2):177–190

    Article  Google Scholar 

  • Jansen JP, Naci H (2013) Is network meta-analysis as valid as standard pairwise meta-analysis? It all depends on the distribution of effect modifiers. BMC Med 11(1):159

    Article  Google Scholar 

  • Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N et al (2011) Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value Health 14(4):417–428

    Article  Google Scholar 

  • Jansen JP, Schmid CH, Salanti G (2012) Directed acyclic graphs can help understand bias in indirect and mixed treatment comparisons. J Clin Epidemiol 65(7):798–807

    Article  Google Scholar 

  • Jansen JP, Trikalinos T, Cappelleri JC, Daw J, Andes S, Eldessouki R, Salanti G (2014) Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform health care decision making: an ISPOR-AMCP-NPC Good Practice Task Force report. Value Health 17(2):157–173

    Article  Google Scholar 

  • Kew KM, Dias S, Cates CJ (2014) Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis. Cochrane Database Syst Rev 3:CD010844

    Google Scholar 

  • Lambert PC, Sutton AJ, Abrams KR, Jones DR (2002) A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. J Clin Epidemiol 55(1):86–94

    Article  Google Scholar 

  • Leahy J, O'Leary A, Afdhal N, Gray E, Milligan S, Wehmeyer MH, Walsh C (2018) The impact of individual patient data in a network meta-analysis: an investigation into parameter estimation and model selection. Res Synth Methods 9(3):441–469

    Google Scholar 

  • Lipsky AM, Gausche-Hill M, Vienna M, Lewis RJ (2010) The importance of “shrinkage” in subgroup analyses. Ann Emerg Med 55(6):544–552

    Article  Google Scholar 

  • Lu G, Ades AE (2004) Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med 23(20):3105–3124

    Article  Google Scholar 

  • Lumley T (2002) Network meta-analysis for indirect treatment comparisons. Stat Med 21(16):2313–2324

    Article  Google Scholar 

  • Mayo-Wilson E, Dias S, Mavranezouli I, Kew K, Clark DM, Ades AE, Pilling S (2014) Psychological and pharmacological interventions for social anxiety disorder in adults: a systematic review and network meta-analysis. Lancet Psychiatry 1(5):368–376

    Article  Google Scholar 

  • Nixon RM, Bansback N, Brennan A (2007) Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis. Stat Med 26(6):1237–1254

    Article  MathSciNet  Google Scholar 

  • Phillippo DM, Ades AE, Dias S, Palmer S, Abrams KR, Welton NJ (2018) Methods for population-adjusted indirect comparisons in health technology appraisal. Med Decis Mak 38(2):200–211

    Article  Google Scholar 

  • Riley RD, Steyerberg EW (2010) Meta-analysis of a binary outcome using individual participant data and aggregate data. Res Synth Methods 1(1):2–19

    Article  Google Scholar 

  • Riley RD, Simmonds MC, Look MP (2007) Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. J Clin Epidemiol 60(5):431–4e1

    Article  Google Scholar 

  • Riley RD, Lambert PC, Staessen JA, Wang J, Gueyffier F, Thijs L, Boutitie F (2008) Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med 27(11):1870–1893

    Article  MathSciNet  Google Scholar 

  • Riley RD, Lambert PC, Abo-Zaid G (2010) Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340:c221

    Article  Google Scholar 

  • Salanti G, Higgins JP, Ades AE, Ioannidis JP (2008) Evaluation of networks of randomized trials. Stat Methods Med Res 17(3):279–301

    Article  MathSciNet  Google Scholar 

  • Saramago P, Sutton AJ, Cooper NJ, Manca A (2012) Mixed treatment comparisons using aggregate and individual participant level data. Stat Med 31(28):3516–3536

    Article  MathSciNet  Google Scholar 

  • Schmid CH, Stark PC, Berlin JA, Landais P, Lau J (2004) Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors. J Clin Epidemiol 57(7):683–697

    Article  Google Scholar 

  • Sculpher M (2008) Subgroups and heterogeneity in cost-effectiveness analysis. PharmacoEconomics 26(9):799–806

    Article  Google Scholar 

  • Stevens W, Normand C (2004) Optimisation versus certainty: understanding the issue of heterogeneity in economic evaluation. Soc Sci Med 58(2):315–320

    Article  Google Scholar 

  • Sutton AJ, Kendrick D, Coupland CA (2008) Meta-analysis of individual-and aggregate-level data. Stat Med 27(5):651–669

    Article  MathSciNet  Google Scholar 

  • Turner RM, Spiegelhalter DJ, Smith GC, Thompson SG (2009) Bias modelling in evidence synthesis. J R Stat Soc A Stat Soc 172(1):21–47

    Article  MathSciNet  Google Scholar 

  • Warren FC, Abrams KR, Sutton AJ (2014) Hierarchical network meta-analysis models to address sparsity of events and differing treatment classifications with regard to adverse outcomes. Stat Med 33(14):2449–2466

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen P. Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jansen, J.P. (2020). Heterogeneity and Subgroup Analysis in Network Meta-Analysis. In: Ting, N., Cappelleri, J., Ho, S., Chen, (G. (eds) Design and Analysis of Subgroups with Biopharmaceutical Applications. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-40105-4_18

Download citation

Publish with us

Policies and ethics