Skip to main content

An Updated Review on Net-Zero Energy and Water Buildings: Design and Operation

  • Chapter
  • First Online:
Food-Energy-Water Nexus Resilience and Sustainable Development

Abstract

Recently, net-zero buildings (NZBs) have specially attracted the attention of researchers due to their high performance in saving energy and reducing environmental impacts. A zero energy building (ZEB) and zero water building (ZWB) are nearly neutral buildings with very high energy and water performance that can greatly reduce the energy and water usage and consequently mitigate carbon emissions. Such system is achievable through balancing energy needs supplied by solar or other renewable energy sources. However, so far, no precise method for designing, operating, and controlling this type of building has been provided to achieve net ZEB and net ZWB goal. NZB is significantly effective in reducing greenhouse gas (GHG) emissions, total energy and water consumption, and utilization cost for building owners. The main purpose of this chapter is to examine various existing net ZEBs and net NZWBs frameworks, assess the progress and implementations of the NZEB and NZWB, review development policies for design and operation worldwide, interrelationship among net ZEB and net ZWB, as well as study areas that have potential for developing net ZEBs and net ZWBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Copeland, N.T. Carter, Energy-water nexus: The water sector’s energy use, Library of Congress, Congressional Research Service, 2014

    Google Scholar 

  2. J.-L. Fan, L.-S. Kong, X. Zhang, J.-D. Wang, Energy-water nexus embodied in the supply chain of China: Direct and indirect perspectives. Energy Convers. Manag. 183, 126–136 (2019)

    Article  Google Scholar 

  3. F. Meng, G. Liu, S. Liang, M. Su, Z. Yang, Critical review of the energy-water-carbon nexus in cities. Energy 171, 1017–1032 (2019)

    Article  Google Scholar 

  4. B. Ali, A. Kumar, Development of water demand coefficients for power generation from renewable energy technologies. Energy Convers. Manag. 143, 470–481 (2017)

    Article  Google Scholar 

  5. S. Chen, B. Chen, Urban energy–water nexus: A network perspective. Appl. Energy 184, 905–914 (2016)

    Article  Google Scholar 

  6. T.A. DeNooyer, J.M. Peschel, Z. Zhang, A.S. Stillwell, Integrating water resources and power generation: the energy–water nexus in Illinois. Appl. Energy 162, 363–371 (2016)

    Article  Google Scholar 

  7. D. Fang, B. Chen, Linkage analysis for the water–Energy nexus of city. Appl. Energy 189, 770–779 (2017)

    Article  Google Scholar 

  8. S. Kenway, A. Priestley, S. Cook, S. Seo, M. Inman, A. Gregory, M.J.W.S.A.o.A.S. Hall, Australia, Energy use in the provision and consumption of urban water in Australia and New Zealand, (2008)

    Google Scholar 

  9. M. Khalkhali, K. Westphal, W. Mo, The water-energy nexus at water supply and its implications on the integrated water and energy management. Sci. Total Environ. 636, 1257–1267 (2018)

    Article  Google Scholar 

  10. P. Póvoa, A. Oehmen, P. Inocêncio, J. Matos, A. Frazão, Modelling energy costs for different operational strategies of a large water resource recovery facility. Water Sci. Technol. 75(9), 2139–2148 (2017)

    Article  Google Scholar 

  11. V. Tidwell, B. Moreland, Mapping water consumption for energy production around the Pacific Rim. Environ. Res. Lett. 11(9), 094008 (2016)

    Article  Google Scholar 

  12. C. Wang, R. Wang, E. Hertwich, Y. Liu, A technology-based analysis of the water-energy-emission nexus of China’s steel industry. Resour. Conserv. Recycling 124, 116–128 (2017)

    Article  Google Scholar 

  13. G. Chhipi-Shrestha, K. Hewage, R. Sadiq, Impacts of neighborhood densification on water-energy-carbon nexus: investigating water distribution and residential landscaping system. J. Cleaner Product. 156, 786–795 (2017)

    Article  Google Scholar 

  14. S. Dhakal, A. Shrestha, Optimizing Water-Energy-Carbon Nexus in Cities for Low Carbon Development, Creating low carbon cities (Springer 2017), pp. 29–42

    Google Scholar 

  15. C. Duan, B. Chen, Energy-water-carbon nexus at urban scale. Energy Procedia 104, 183–190 (2016)

    Article  Google Scholar 

  16. Y. Gu, Y.-n. Dong, H. Wang, A. Keller, J. Xu, T. Chiramba, F. Li, Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective. Ecolo. Indicat. 60, 402–409 (2016)

    Article  Google Scholar 

  17. S. Kenway, P. Lant, T. Priestley, Quantifying water–energy links and related carbon emissions in cities. J. Water Climate Change 2(4), 247–259 (2011)

    Article  Google Scholar 

  18. S. Nair, B. George, H.M. Malano, M. Arora, B. Nawarathna, Water–energy–greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods. Resour. Conserv. Recycling 89, 1–10 (2014)

    Article  Google Scholar 

  19. J.R. Stokes, A. Horvath, Energy and Air Emission Effects of Water Supply (ACS Publications, 2009)

    Google Scholar 

  20. M.C. Valdez, I. Adler, M. Barrett, R. Ochoa, A. Pérez, The water-energy-carbon nexus: optimising rainwater harvesting in Mexico City. Environ. Process. 3(2), 307–323 (2016)

    Google Scholar 

  21. G. Venkatesh, A. Chan, H. Brattebø, Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors. Energy 75, 153–166 (2014)

    Article  Google Scholar 

  22. X. Yang, Y. Wang, M. Sun, R. Wang, P. Zheng, Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective. Appl. Energy 228, 2298–2307 (2018)

    Article  Google Scholar 

  23. C. Zhang, L.D. Anadon, Life cycle water use of energy production and its environmental impacts in China. Environ. Sci. Technol. 47(24), 14459–14467 (2013)

    Article  Google Scholar 

  24. Y. Zhou, B. Zhang, H. Wang, J. Bi, Drops of energy: conserving urban water to reduce greenhouse gas emissions. Environ. Sci. Technol. 47(19), 10753–10761 (2013)

    Article  Google Scholar 

  25. V. Sousa, C.M. Silva, I. Meireles, Performance of water efficiency measures in commercial buildings. Resour. Conserv. Recycling 143, 251–259 (2019)

    Article  Google Scholar 

  26. P. Hernandez, P. Kenny, From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy Build. 42(6), 815–821 (2010)

    Article  Google Scholar 

  27. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer, Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press (2007)

    Google Scholar 

  28. European Commission – Buildings section. Available: https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings

  29. S.L.F. Montana, E.R. Sanseverino, A review on optimization and cost-optimal methodologies in low-energy buildings design and environmental considerations. Sustainable cities and society 45, 87–104 (2018)

    Google Scholar 

  30. F. Souayfane, F. Fardoun, P.-H. Biwole, Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 129, 396–431 (2016)

    Article  Google Scholar 

  31. D. D’Agostino, L. Mazzarella, What is a Nearly zero energy building? Overview, implementation and comparison of definitions. Jour. Build. Engg. 21, 200–212 (2018)

    Google Scholar 

  32. Eurostat., Final energy consumption by sector. 2014. Available at: http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search/database

  33. I.L.F. Institute, https://living-future.org/net-zero/

  34. W.G.B.C.a.A. 2030, https://www.environmentalleader.com/2016/07/net-zero-green-building-certification-coming-soon/

  35. E.E.a.R. Energy, http://energy.gov/sites/prod/files/2015/09/f26/bto_common_definition_zero_energy_buildings_093015.pdf

  36. K.M. Fowler, D.I. Demirkanli, D.J. Hostick, K.L. McMordie Stoughton, A.E. Solana, R.S. Sullivan, Federal Campuses Handbook for Net Zero Energy, Water, and Waste, Pacific Northwest National Lab.(PNNL), Richland, 2017

    Google Scholar 

  37. S.C. Bhattacharyya, Energy economics: Concepts, issues, markets and governance, Springer Science & Business Media 2011

    Google Scholar 

  38. S. Podolinsky, Socialism and the unity of physical forces. Org. Environ. 17(1), 61–75 (2004)

    Article  Google Scholar 

  39. E.E. Heffernan, W. Pan, X. Liang, P. De Wilde, Redefining zero? A critical review of definitions of zero energy buildings and zero carbon homes. CIBSE Technical Symposium, 1–14. United Kingdom: CIBSE (2013)

    Google Scholar 

  40. Y. Lu, S. Wang, K. Shan, Design optimization and optimal control of grid-connected and standalone nearly/net zero energy buildings. Appl. Energy 155, 463–477 (2015)

    Article  Google Scholar 

  41. J. Kurnitski, F. Allard, D. Braham, G. Goeders, P. Heiselberg, L. Jagemar, R. Kosonen, J. Lebrun, L. Mazzarella, J. Railio, How to define nearly net zero energy buildings nZEB. Rehva Jour. 48(3), 6–12 (2011)

    Google Scholar 

  42. J. Rey-Hernández, E. Velasco-Gómez, S. José-Alonso, A. Tejero-González, F.J.E. Rey-Martínez, Energy analysis at a near zero energy building. A case-study in Spain. Energies 11(4), 857 (2018)

    Article  Google Scholar 

  43. U.J.H.o.E.E.i.B.A.L.C.A. Berardi, ZEB and NZEB (Definitions, Design Methodologies, Good Practices, and Case Studies), (2018) 88

    Google Scholar 

  44. P. Torcellini, S. Pless, M. Deru, D. Crawley, Zero energy buildings: a critical look at the definition, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2006

    Google Scholar 

  45. S. Pless, P. Torcellini, Net-zero energy buildings: A classification system based on renewable energy supply options, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2010

    Google Scholar 

  46. I. Sartori, A. Napolitano, A.J. Marszal, S. Pless, P. Torcellini, K. Voss, Criteria for definition of net zero energy buildings. Proc. EuroSun. (2010)

    Google Scholar 

  47. L. Wells, B. Rismanchi, L. Aye, A review of Net Zero Energy Buildings with reflections on the Australian context. Energy Build. 158, 616–628 (2018)

    Article  Google Scholar 

  48. U. Berardi, A cross-country comparison of the building energy consumptions and their trends. Resour. Conserv. Recycling 123, 230–241 (2017)

    Article  Google Scholar 

  49. R.H. Henninger, M.J. Witte, D.B. Crawley, Analytical and comparative testing of EnergyPlus using IEA HVAC BESTEST E100–E200 test suite. Energy Build. 36(8), 855–863 (2004)

    Article  Google Scholar 

  50. M.A. Hannan, M. Faisal, P.J. Ker, L.H. Mun, K. Parvin, T.M.I. Mahlia, F. Blaabjerg, A review of internet of energy based building energy management systems: Issues and recommendations. IEEE Access 6, 38997–39014 (2018)

    Article  Google Scholar 

  51. I. Sartori, A. Napolitano, K. Voss, Net zero energy buildings: A consistent definition framework. Energy Build. 48, 220–232 (2012)

    Article  Google Scholar 

  52. S. Pless, P.A. Torcellini, Getting to net zero. ASHRAE Jour. 51(9), 18 (2009)

    Google Scholar 

  53. K. Voss, E. Musall, M. Lichtmess, From low-energy to Net Zero-Energy Buildings: Status and perspectives. J. Green Build. 6(1), 46–57 (2011)

    Article  Google Scholar 

  54. The International Living Future Institute’s (ILFI) Zero Energy (ZE) Institute, https://living-future.org/net-zero/

  55. R.H. Abdellah, M.A.N. Masrom, G.K. Chen, S. Mohamed, R. Omar, The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development, IOP Conference series: Materials Science and Engineering, IOP Publishing, 2017, p. 012021

    Google Scholar 

  56. A. Chel, G. Kaushik, Renewable energy technologies for sustainable development of energy efficient building. Alexandria Eng. J. 57(2), 655–669 (2018)

    Article  Google Scholar 

  57. D. Kolokotsa, D. Rovas, E. Kosmatopoulos, K. Kalaitzakis, A roadmap towards intelligent net zero-and positive-energy buildings. Solar Energy 85(12), 3067–3084 (2011)

    Article  Google Scholar 

  58. C. Koo, T. Hong, H.S. Park, G. Yun, Framework for the analysis of the potential of the rooftop photovoltaic system to achieve the net-zero energy solar buildings. Prog. Photovolt. Res. Applic. 22(4), 462–478 (2014)

    Article  Google Scholar 

  59. J.D. Englehardt, T. Wu, G. Tchobanoglous, Urban net-zero water treatment and mineralization: Experiments, modeling and design. Water Res. 47(13), 4680–4691 (2013)

    Article  Google Scholar 

  60. A.J. Marszal, P. Heiselberg, J.S. Bourrelle, E. Musall, K. Voss, I. Sartori, A. Napolitano, Zero Energy Building–A review of definitions and calculation methodologies. Energy Build. 43(4), 971–979 (2011)

    Article  Google Scholar 

  61. R. Evins, A review of computational optimisation methods applied to sustainable building design. Renew. Sust. Energy Rev. 22, 230–245 (2013)

    Article  Google Scholar 

  62. M. Ferrara, V. Monetti, E. Fabrizio, Cost-optimal analysis for nearly zero energy buildings design and optimization: a critical review. Energies 11(6), 1478 (2018)

    Article  Google Scholar 

  63. Y. Huang, J.-I. Niu, Optimal building envelope design based on simulated performance: History, current status and new potentials. Energy Build. 117, 387–398 (2016)

    Article  Google Scholar 

  64. F. Kheiri, A review on optimization methods applied in energy-efficient building geometry and envelope design. Renew. Sust. Energy Rev. 92, 897–920 (2018)

    Article  Google Scholar 

  65. V. Machairas, A. Tsangrassoulis, K. Axarli, Algorithms for optimization of building design: A review. Renew. Sust. Energy Rev. 31, 101–112 (2014)

    Article  Google Scholar 

  66. L.E. Mavromatidis, A review on hybrid optimization algorithms to coalesce computational morphogenesis with interactive energy consumption forecasting. Energy Build. 106, 192–202 (2015)

    Article  Google Scholar 

  67. A.-T. Nguyen, S. Reiter, P. Rigo, A review on simulation-based optimization methods applied to building performance analysis. Appl. Energy 113, 1043–1058 (2014)

    Article  Google Scholar 

  68. T. Østergård, R.L. Jensen, S.E. Maagaard, Building simulations supporting decision making in early design–A review. Renew. Sust. Energy Rev. 61, 187–201 (2016)

    Article  Google Scholar 

  69. X. Shi, Z. Tian, W. Chen, B. Si, X. Jin, A review on building energy efficient design optimization rom the perspective of architects. Renew. Sust. Energy Rev. 65, 872–884 (2016)

    Article  Google Scholar 

  70. O.R. Al-Jayyousi, Greywater reuse: Towards sustainable water management. Desalination 156(1–3), 181–192 (2003)

    Article  Google Scholar 

  71. A.K. Marinoski, E. Ghisi, Environmental performance of hybrid rainwater-greywater systems in residential buildings. Resour. Conserv. Recycling 144, 100–114 (2019)

    Article  Google Scholar 

  72. D. Aelenei, L. Aelenei, E. Musall, E. Cubi, J. Ayoub, A. Belleri, Design Strategies for Non-residential Zero-Energy Buildings: Lessons Learned from Task40/Annex 52: Towards Net Zero-Energy Solar Buildings, CLIMA 2013-11th REHVA World Congress & 8th International Conference on IAQVEC, 2013

    Google Scholar 

  73. G. Habash, D. Chapotchkine, P. Fisher, A. Rancourt, R. Habash, W. Norris, Sustainable design of a nearly zero energy building facilitated by a smart microgrid. J. Renew. Energy 2014, 1–11 (2014)

    Article  Google Scholar 

  74. M. Leach, S. Pless, P. Torcellini, Cost Control Best Practices for Net Zero Energy Building Projects, National Renewable Energy Lab.(NREL), Golden 2014

    Google Scholar 

  75. Z. Liu, W. Li, Y. Chen, Y. Luo, L. Zhang, Review of energy conservation technologies for fresh air supply in zero energy buildings. Appl. Thermal Eng. 148, 544 (2019)

    Article  Google Scholar 

  76. D. Kim, H. Cho, R. Luck, Potential Impacts of Net-Zero Energy Buildings with Distributed Photovoltaic Power Generation on the US Electrical Grid, 141(6) 062005 (2019)

    Google Scholar 

  77. A.A. Alawode, P. Rajagopalan, The way forward—Moving toward net zero energy standards. Energy Performance in the Australian Built Environment (Springer, 2019) pp. 199–213

    Google Scholar 

  78. H. Erhorn, H. Erhorn-Kluttig, Selected examples of nearly zero-energy buildings. Report of the Concerted Action EPBD (2014)

    Google Scholar 

  79. https://investors.sunpower.com/news-releases/news-release-details/uc-davis-west-village-rising-largest-planned-zero-net-energy

  80. https://ec.europa.eu/easme/en/section/energy/intelligent-energy-europe

  81. https://www.rehva.eu/news/news-single/article/selected-examples-of-nearly-zero-energy-buildings-detailed-report.html

  82. https://www.observatoirebbc.org/construction

  83. J.D. Englehardt, T. Wu, F. Bloetscher, Y. Deng, P. Du Pisani, S. Eilert, S. Elmir, T. Guo, J. Jacangelo, M. LeChevallier, Net-zero water management: Achieving energy-positive municipal water supply. Environ. Sci. Water Res. Technol. 2(2), 250–260 (2016)

    Article  Google Scholar 

  84. E. Ghisi, S.M.J.B. de Oliveira, Potential for potable water savings by combining the use of rainwater and greywater in houses in southern Brazil. Build. Environ. 42(4), 1731–1742 (2007)

    Article  Google Scholar 

  85. E. Ghisi, D.L. Bressan, M. Martini, Rainwater tank capacity and potential for potable water savings by using rainwater in the residential sector of southeastern Brazil. Build. Environ. 42(4), 1654–1666 (2007)

    Article  Google Scholar 

  86. U.N.D.o.P. Information, The millennium development goals report 2009, United Nations Publications 2009

    Google Scholar 

  87. J.D. Sachs, From millennium development goals to sustainable development goals. The Lancet 379(9832), 2206–2211 (2012)

    Article  Google Scholar 

  88. S. Muthukumaran, K. Baskaran, N. Sexton, Quantification of potable water savings by residential water conservation and reuse–A case study. Resour. Conserv. Recycling 55(11), 945–952 (2011)

    Article  Google Scholar 

  89. The Federal Energy Management and Planning Programs, https://www.ecfr.gov/cgi-bin/text-idx?rgn=div5&node=10:3.0.1.4.23

  90. The Federal Energy Management Program (FEMP), http://energy.gov/eere/femp/best-management-practices-water-efficiency

  91. B.J. Carragher, R.A. Stewart, C.D. Beal, Quantifying the influence of residential water appliance efficiency on average day diurnal demand patterns at an end use level: A precursor to optimised water service infrastructure planning. Resour. Conserv. Recycling 62, 81–90 (2012)

    Article  Google Scholar 

  92. D. Mandal, P. Labhasetwar, S. Dhone, A.S. Dubey, G. Shinde, S. Wate, Water conservation due to greywater treatment and reuse in urban setting with specific context to developing countries. Resour. Conserv. Recycling 55(3), 356–361 (2011)

    Article  Google Scholar 

  93. R.M. Willis, R.A. Stewart, D.P. Giurco, M.R. Talebpour, A. Mousavinejad, End use water consumption in households: impact of socio-demographic factors and efficient devices. J. Cleaner Product. 60, 107–115 (2013)

    Article  Google Scholar 

  94. E. Ghisi, P.N. Schondermark, Investment feasibility analysis of rainwater use in residences. Water Resour. Manag. 27(7), 2555–2576 (2013)

    Article  Google Scholar 

  95. M.H.R. Mehrabadi, B. Saghafian, F.H. Fashi, Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions. Resour. Conserv. Recycling 73, 86–93 (2013)

    Article  Google Scholar 

  96. A. Palla, I. Gnecco, L. Lanza, P. La Barbera, Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycling 62, 71–80 (2012)

    Article  Google Scholar 

  97. E.D.A. do Couto, M.L. Calijuri, P.P. Assemany, A. da Fonseca Santiago, I. de Castro Carvalho, Greywater production in airports: qualitative and quantitative assessment. Resour. Conserv. Recycling 77, 44–51 (2013)

    Article  Google Scholar 

  98. K.A. Mourad, J.C. Berndtsson, R. Berndtsson, Potential fresh water saving using greywater in toilet flushing in Syria. J. Environ. Manag. 92(10), 2447–2453 (2011)

    Article  Google Scholar 

  99. D. Styles, H. Schoenberger, J.L. Galvez-Martos, Water management in the European hospitality sector: Best practice, performance benchmarks and improvement potential. Tourism Manag. 46, 187–202 (2015)

    Article  Google Scholar 

  100. L. Domènech, D. Saurí, A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the Metropolitan Area of Barcelona (Spain): Social experience, drinking water savings and economic costs. J. Cleaner Product. 19(6–7), 598–608 (2011)

    Article  Google Scholar 

  101. V.A. Lopes, G.F. Marques, F. Dornelles, J. Medellin-Azuara, Performance of rainwater harvesting systems under scenarios of non-potable water demand and roof area typologies using a stochastic approach. J. Cleaner Product. 148, 304–313 (2017)

    Article  Google Scholar 

  102. A. Rahman, J. Keane, M.A. Imteaz, Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits. Resour. Conserv. Recycling 61, 16–21 (2012)

    Article  Google Scholar 

  103. C.M. Silva, V. Sousa, N.V. Carvalho, Evaluation of rainwater harvesting in Portugal: Application to single-family residences. Resour. Conserv. Recycling 94, 21–34 (2015)

    Article  Google Scholar 

  104. S. Godfrey, P. Labhasetwar, S. Wate, Greywater reuse in residential schools in Madhya Pradesh, India—A case study of cost–benefit analysis. Resour. Conserv. Recycling 53(5), 287–293 (2009)

    Article  Google Scholar 

  105. Z.L. Yu, J. DeShazo, M.K. Stenstrom, Y. Cohen, Cost–benefit analysis of onsite residential graywater recycling: A case study on the City of Los Angeles. J. Am. Water Works Assoc. 107(9), E436–E444 (2015)

    Article  Google Scholar 

  106. J. Devkota, H. Schlachter, D. Apul, Life cycle based evaluation of harvested rainwater use in toilets and for irrigation. J. Cleaner Product. 95, 311–321 (2015)

    Article  Google Scholar 

  107. S.R. Ghimire, J.M. Johnston, W.W. Ingwersen, S. Sojka, Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system. J. Cleaner Product. 151, 74–86 (2017)

    Article  Google Scholar 

  108. T. Morales-Pinzón, J. Rieradevall, C.M. Gasol, X. Gabarrell, Modelling for economic cost and environmental analysis of rainwater harvesting systems. J. Cleaner Product. 87, 613–626 (2015)

    Article  Google Scholar 

  109. M. García-Montoya, D. Sengupta, F. Nápoles-Rivera, J.M. Ponce-Ortega, M.M. El-Halwagi, Environmental and economic analysis for the optimal reuse of water in a residential complex. J. Cleaner Product. 130, 82–91 (2016)

    Article  Google Scholar 

  110. T. Keeting, M. Styles, Performance Assessment of Low Flush Volume Toilets: Final Report for Southern Water and the Environment Agency (2004)

    Google Scholar 

  111. M. Lee, B. Tansel, M.J.R. Balbin, Influence of residential water use efficiency measures on household water demand: A four year longitudinal study. Resour. Conserv. Recycling 56(1), 1–6 (2011)

    Article  Google Scholar 

  112. P. Mayer, W. DeOreo, E. Towler, L. Martien, D. Lewis, The impacts of high efficiency plumbing fixture retrofits in single-family homes (2004)

    Google Scholar 

  113. A. Turner, S. White, K. Beatty, A. Gregory, Results of the largest residential demand management program in Australia. Water Sci. Technol. Water Supply 5(3–4), 249–256 (2005)

    Article  Google Scholar 

  114. Y. Tsai, S. Cohen, R.M. Vogel, The impacts of water conservation strategies on water use: Four case studies. J. Am. Water Resour. Assoc. 47(4), 687–701 (2011)

    Article  Google Scholar 

  115. S. Ward, F. Memon, D. Butler, Performance of a large building rainwater harvesting system. Water Res. 46(16), 5127–5134 (2012)

    Article  Google Scholar 

  116. M. Gual, A. Moià, J.G. March, Monitoring of an indoor pilot plant for osmosis rejection and greywater reuse to flush toilets in a hotel. Desalination 219(1–3), 81–88 (2008)

    Article  Google Scholar 

  117. J. March, M. Gual, F. Orozco, Experiences on greywater re-use for toilet flushing in a hotel (Mallorca Island, Spain). Desalination 164(3), 241–247 (2004)

    Article  Google Scholar 

  118. N.H.M. Lani, A. Syafiuddin, Z. Yusop, Comparison of Cost Benefits of New Installation and Retrofitted Rainwater Harvesting Systems for Commercial Buildings, International Conference on Urban Drainage Modelling, Springer, 2018, pp. 169–174

    Google Scholar 

  119. M.R. Karim, M.Z.I. Bashar, M.A. Imteaz, Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh. Resour. Conserv. Recycl. 104, 61–67 (2015)

    Article  Google Scholar 

  120. C.C. Amos, A. Rahman, J.M. Gathenya, Economic analysis of rainwater harvesting systems comparing developing and developed countries: A case study of Australia and Kenya. J. Cleaner Product. 172, 196–207 (2018)

    Article  Google Scholar 

  121. N.H.M. Lani, A. Syafiuddin, Z. Yusop, M.Z.B.M. Amin, Performance of small and large scales rainwater harvesting systems in commercial buildings under different reliability and future water tariff scenarios. Sci. Total Environ. 636, 1171–1179 (2018)

    Article  Google Scholar 

  122. A. Campisano, D. Butler, S. Ward, M.J. Burns, E. Friedler, K. DeBusk, L.N. Fisher-Jeffes, E. Ghisi, A. Rahman, H. Furumai, Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 115, 195–209 (2017)

    Article  Google Scholar 

  123. S.W. Foo, D.Y.S. Mah, B.E. Ayu, Modelling rainwater harvesting for commercial buildings. Water Pract. Technol. 12(3), 698–705 (2017)

    Article  Google Scholar 

  124. A. Palla, I. Gnecco, P. La Barbera, The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. J. Environ. Manag. 191, 297–305 (2017)

    Article  Google Scholar 

  125. E.H. de Gois, C.A. Rios, N. Costanzi, Evaluation of water conservation and reuse: a case study of a shopping mall in southern Brazil. J. Cleaner Product. 96, 263–271 (2015)

    Article  Google Scholar 

  126. http://www.wbdg.org/resources/net-zero-energy-buildings

  127. https://blogs.microsoft.com/green/2017/12/05/building-first-net-zero-water-campus-silicon-valley/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Asadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asadi, S., Nazari-Heris, M., Nasab, S.R., Torabi, H., Sharifironizi, M. (2020). An Updated Review on Net-Zero Energy and Water Buildings: Design and Operation. In: Asadi, S., Mohammadi-Ivatloo, B. (eds) Food-Energy-Water Nexus Resilience and Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-030-40052-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40052-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40051-4

  • Online ISBN: 978-3-030-40052-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics