Skip to main content

Embodiment of Nanobiotechnology in Agriculture: An Overview

  • Chapter
  • First Online:
Nanobiotechnology in Agriculture

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Agriculture is facing tremendous challenges in achieving the desired yield because of various factors such as anthropogenic activities, climate change, soil degradation, mal-agricultural practices, urbanization, and industrialization. To overcome these problems, nanotechnology is one of the most important tools in modern agriculture. It is anticipated to become a driving economic force in the near future. It provides new agrochemical agents, new delivery mechanisms for crop improvement, and promises to reduce dependency upon conventional agrochemicals. Nanotechnology can boost agricultural production through nano-formulations of agrochemicals used as nano-pesticides and nanofertilizers for crop improvement. These nano materials would release pesticides or fertilizers at a specific time and targeted location. Besides, nano-biosensors are used in crop protection for the identification of different plant diseases. Nanoparticles tagged to agrochemicals or other substances could reduce the damage to other plants and the amount of chemicals released into the environment. Moreover, integration of nanotechnology with biotechnology acts as an important tool for structural and genetic engineering. The present chapter will be focusing on nanobiotechnology, its applications, implications, smart delivery systems, and aspects that can improve the crop yield and influence the agriculture industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P et al (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73:463–476

    Article  PubMed  Google Scholar 

  • Bellingham BK (2011) Proximal soil sensing. Vadose Zone J 10:1342–1342

    Article  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Bulovic V, Mandell A, Perlman A (2004) Molecular memory device. US 20050116256 A1

    Google Scholar 

  • Campbell BM, Thornton P, Zougmoré R, van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sustain 8:39–43

    Article  Google Scholar 

  • Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 41:2–13

    CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49

    Article  CAS  PubMed  Google Scholar 

  • de Medeiros GA, Arruda FB, Sakai E, Fujiwara M (2001) The influence of crop canopy on evapotranspiration and crop coefficient of beans (Phaseolus vulgaris L.). Agric Water Manag 49:211–224

    Article  Google Scholar 

  • de Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    Article  PubMed  CAS  Google Scholar 

  • Dixit R, Malaviya WD, Pandiyan K, Singh UB, Sahu A et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y et al (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  PubMed  Google Scholar 

  • EFSA Scientific Committee (2011) Scientific opinion on guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9:2140

    Article  CAS  Google Scholar 

  • El Beyrouthya M, El Azzi D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol 2:e118

    Article  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647

    Article  CAS  Google Scholar 

  • FAO (2013) Food Agriculture Organization of the United Nations WHO, World Health Organization. State of the Art on the Initiatives and Activities Relevant to Risk Assessment and Risk Management of Nanotechnologies in the Food and Agriculture Sectors. Technical Paper, FAO and WHO, Rome

    Google Scholar 

  • Feynman RP (1996) No ordinary genius: the illustrated Richard Feynman. W.W. Norton & Company, New York

    Google Scholar 

  • Floros JD, Newsome R, Fisher W, Barbosa-Cánovas GV, Chen H, Dunne CP et al (2010) Feeding the world today and tomorrow: the importance of food science and technology. Compr Rev Food Sci Food Saf 9:572–599

    Article  PubMed  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • Garnett T, Godfray C (2012) Sustainable intensification in agriculture. Navigating a course through competing food system priorities. In: Food climate research network and the oxford martin programme on the future of food. University of Oxford, Oxford

    Google Scholar 

  • Gibney E (2015) Bucky balls in space solve 100-year-old riddle. Nature News. https://doi.org/10.1038/nature.2015.17987

  • Grillo R, Dos Santos NZP, Maruyama CR, Rosa AH, De Lima R, Fraceto LF et al (2012) Poly (epsilon-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9

    Article  PubMed  CAS  Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Ion AC, Ion I, Culetu A (2010) Carbon-based nanomaterials: environmental applications, vol 38. Univ. Politehn. Bucharest, BucureÈ™ti, pp 129–132

    Google Scholar 

  • Kah M, Machinski P, Koerner P, Tiede K, Grillo R, Fraceto LF et al (2014) Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ Sci Pollut Res Int 21:11699–11707

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy S, Prema RS (2015) Methods of synthesis of nano particles and its applications. J Chem Pharm Res 7:278–285

    CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  • Khota LR, Sankarana S, Majaa JM, Ehsania R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Lambreva MD, Lavecchia T, Tyystjärvi E, Antal TK, Orlanducci S, Margonelli A et al (2015) Potential of carbon nanotubes in algal biotechnology. Photosyn Res 125:451–471

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Malysheva A, Lombi E, Voelcker NH (2015) Bridging the divide between human and environmental nanotoxicology. Nat Nanotechnol 10:835–844

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107

    Article  CAS  PubMed  Google Scholar 

  • Misra P, Shukla PK, Pramanik K, Gautam S, Kole C (2016) Nanotechnology for crop improvement. In: Kole C, Kumar D, Khodakovskaya M (eds) Plant nanotechnology. Springer, Cham, pp 219–256

    Chapter  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Oliveira HC, Stolf-Moreira R, Martinez CBR, Grillo R, De Jesus MB, Fraceto LF (2015a) Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS One 10:e0132971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira HC, Stolf-Moreira R, Martinez CBR, Sousa GFM, Grillo R, De Jesus MB et al (2015b) Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Front Chem 3:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozdemir M, Kemerli T (2016) Innovative applications of micro and nanoencapsulation in food packaging. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Wiley, Chichester

    Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Pirzadah TB, Malik B, Maqbool T, Rehman RU (2019) Development of nano-bioformulations of nutrients for sustainable agriculture. In: Prasad R, Kumar V, Kumar M, Choudhary D (eds) Nanobiotechnology in bioformulations. Springer, Cham, pp 381–394. Nanotechnology in the Life Sciences

    Chapter  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330

    Article  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1(2):P72–P96

    Article  Google Scholar 

  • Rodríguez J, Martín MJ, Ruiz AM, Clares B (2016) Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives. Food Res Int 83:41–59

    Article  CAS  Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:8

    Article  CAS  Google Scholar 

  • Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V (2014) Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng 2:1707–1716

    Article  CAS  Google Scholar 

  • Sagadevan S, Periasamy M (2014) Recent trends in nano-biosensors and their applications - a review. Rev Adv Mater Sci 36:62–69

    CAS  Google Scholar 

  • Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25

    Article  CAS  PubMed  Google Scholar 

  • Scognamiglio V, Arduini F, Palleschi G, Rea G (2014) Biosensing technology for sustainable food safety. Trac-Trends Anal Chem 62:1–10

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in Agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sertova NM (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16:117–130

    Article  Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. Nano Impact 1:9–12

    Google Scholar 

  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK et al (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11(Part B):265–272. https://doi.org/10.1016/j.plgene.2017.03.006

    Article  CAS  Google Scholar 

  • The Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society, London

    Google Scholar 

  • Thornhill S, Vargyas E, Fitzgerald T, Chisholm N (2016) Household food security and biofuel feedstock production in rural Mozambique and Tanzania. Food Secur 8:953–971

    Article  Google Scholar 

  • Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP et al (2016) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  PubMed  CAS  Google Scholar 

  • Valdes MG, Gonzalez ACV, Calzon JAG, Diaz-Garcia ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19

    Article  CAS  Google Scholar 

  • Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39:47–62

    Article  CAS  Google Scholar 

  • Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2011) MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu Rev Biomed Eng 13:157–184

    Article  CAS  PubMed  Google Scholar 

  • Vidotti M, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT (2011) Biosensors based on gold nanostructures. J Braz Chem Soc 22:3–20

    Article  CAS  Google Scholar 

  • Viswanathan S, Radecki J (2008) Nanomaterials in electrochemical biosensors for food analysis- a review. Pol J Food Nutr Sci 58:157–164

    CAS  Google Scholar 

  • Yao J, Yang M, Duan YX (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114:6130–6178

    Article  CAS  PubMed  Google Scholar 

  • Yunlong C, Smit B (1994) Sustainability in agriculture: a general review. Agric Ecosyst Environ 49:299–307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, T.A., Rather, G.A., Ahmad, M., Kaloo, Z.A. (2020). Embodiment of Nanobiotechnology in Agriculture: An Overview. In: Hakeem, K., Pirzadah, T. (eds) Nanobiotechnology in Agriculture. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39978-8_6

Download citation

Publish with us

Policies and ethics