Skip to main content

Bile Acids and TGR5 (Gpbar1) Signaling

  • Chapter
  • First Online:
Book cover Mammalian Sterols

Abstract

TGR5 (Gpbar1, M-BAR) is a Gs protein-coupled, cell surface receptor responsive to bile acids as well as various steroid hormones. Ligand binding to TGR5 activates adenylate cyclase, triggers an elevation of intracellular cyclic AMP (cAMP) levels and activates further downstream signaling pathways. Moreover, TGR5 can modulate signaling of Src kinases, mitogen-activated protein (MAP) kinases, and the epidermal growth factor receptor (EGFR) independent of adenylate cyclase activation.

TGR5 is expressed almost ubiquitously in human and rodent tissues, with high mRNA levels being present in the stomach as well as in the small and large intestine, the liver, the spleen, the kidney but also in the adrenal glands, the placenta, and the brain. It is likely that TGR5 functions predominately as a bile acid receptor in organs participating in bile acid synthesis, secretion and reabsorption such as liver, intestine and kidney, while TGR5 may represent a cell surface-bound steroid receptor in other organs.

In line with the broad expression, TGR5 exerts multiple functions comprising the modulation of bile acid homeostasis, bile secretion, gallbladder filling, intestinal motility, glucose homeostasis, energy expenditure, and immune functions. Furthermore, activation of TGR5 can attenuate weight gain and atherosclerosis development, improve glycemic control and reduce hepatic steatosis in mice fed a high fat diet. However, through TGR5, bile acids can induce itch and proliferation of cystic and malignant-transformed cholangiocytes. While activation of TGR5 has beneficial effects in metabolic and inflammatory disease models, inhibition of TGR5 signaling may have therapeutic potential in cholestatic pruritus, cholangiocarcinoma, and polycystic liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Häussinger D, Reinehr R, Keitel V. Bile acid signaling in the liver and the biliary tree. In: Häussinger D, Keitel V, Kubitz R, editors. Hepatobiliary transport in health and disease. Berlin: DeGruyter; 2012. p. 85–102.

    Google Scholar 

  2. Copple BL, Li T. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res. 2016;104:9–21.

    CAS  PubMed  Google Scholar 

  3. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87:1315–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Keitel V, Häussinger D. Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol. 2012;36:412–9.

    CAS  PubMed  Google Scholar 

  5. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol. 2011;54:1263–72.

    CAS  PubMed  Google Scholar 

  6. Kalaany NY, Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol. 2006;68:159–91.

    CAS  PubMed  Google Scholar 

  7. Kliewer SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 pathway. Dig Dis. 2015;33:327–31.

    PubMed  PubMed Central  Google Scholar 

  8. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.

    CAS  PubMed  Google Scholar 

  9. Modica S, Bellafante E, Moschetta A. Master regulation of bile acid and xenobiotic metabolism via the FXR, PXR and CAR trio. Front Biosci (Landmark Ed). 2009;14:4719–45.

    CAS  Google Scholar 

  10. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–8.

    CAS  PubMed  Google Scholar 

  11. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543–53.

    CAS  PubMed  Google Scholar 

  12. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA. 2001;98:3369–74.

    CAS  PubMed  Google Scholar 

  13. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci USA. 2001;98:3375–80.

    CAS  PubMed  Google Scholar 

  14. Gascon-Barre M, Demers C, Mirshahi A, Neron S, Zalzal S, Nanci A. The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology. 2003;37:1034–42.

    CAS  PubMed  Google Scholar 

  15. Han S, Chiang JY. Mechanism of vitamin D receptor inhibition of cholesterol 7alpha-hydroxylase gene transcription in human hepatocytes. Drug Metab Dispos. 2009;37:469–78.

    CAS  PubMed  Google Scholar 

  16. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, et al. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296:1313–6.

    CAS  PubMed  Google Scholar 

  17. Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal. 2010;8:e005.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Modica S, Moschetta A. Nuclear bile acid receptor FXR as pharmacological target: are we there yet? FEBS Lett. 2006;580:5492–9.

    CAS  PubMed  Google Scholar 

  19. Pellicciari R, Costantino G, Camaioni E, Sadeghpour BM, Entrena A, Willson TM, Fiorucci S, et al. Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid. J Med Chem. 2004;47:4559–69.

    CAS  PubMed  Google Scholar 

  20. Cheng K, Chen Y, Zimniak P, Raufman JP, Xiao Y, Frucht H. Functional interaction of lithocholic acid conjugates with M3 muscarinic receptors on a human colon cancer cell line. Biochim Biophys Acta. 2002;1588:48–55.

    CAS  PubMed  Google Scholar 

  21. Raufman JP, Chen Y, Cheng K, Compadre C, Compadre L, Zimniak P. Selective interaction of bile acids with muscarinic receptors: a case of molecular mimicry. Eur J Pharmacol. 2002;457:77–84.

    CAS  PubMed  Google Scholar 

  22. Raufman JP, Chen Y, Zimniak P, Cheng K. Deoxycholic acid conjugates are muscarinic cholinergic receptor antagonists. Pharmacology. 2002;65:215–21.

    CAS  PubMed  Google Scholar 

  23. Sheikh Abdul Kadir SH, Miragoli M, Abu-Hayyeh S, Moshkov AV, Xie Q, Keitel V, Nikolaev VO, et al. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes. PLoS One. 2010;5:e9689.

    PubMed  PubMed Central  Google Scholar 

  24. Chen X, Yang D, Shen W, Dong HF, Wang JM, Oppenheim JJ, Howard MZ. Characterization of chenodeoxycholic acid as an endogenous antagonist of the G-coupled formyl peptide receptors. Inflamm Res. 2000;49:744–55.

    CAS  PubMed  Google Scholar 

  25. Ferrari C, Macchiarulo A, Costantino G, Pellicciari R. Pharmacophore model for bile acids recognition by the FPR receptor. J Comput Aided Mol Des. 2006;20:295–303.

    CAS  PubMed  Google Scholar 

  26. Chiang JY. Sphingosine-1-phosphate receptor 2: a novel bile acid receptor and regulator of hepatic lipid metabolism? Hepatology. 2015;61:1118–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kwong E, Li Y, Hylemon PB, Zhou H. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm Sin B. 2015;5:151–7.

    PubMed  PubMed Central  Google Scholar 

  28. Liu R, Li X, Qiang X, Luo L, Hylemon PB, Jiang Z, Zhang L, et al. Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line. J Biol Chem. 2015;290:30988–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu R, Zhao R, Zhou X, Liang X, Campbell DJ, Zhang X, Zhang L, et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology. 2014;60:908–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagahashi M, Takabe K, Liu R, Peng K, Wang X, Wang Y, Hait NC, et al. Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology. 2015;61:1216–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology. 2012;55:267–76.

    CAS  PubMed  Google Scholar 

  32. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–40.

    CAS  PubMed  Google Scholar 

  33. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun. 2002;298:714–9.

    CAS  PubMed  Google Scholar 

  34. Sato H, Macchiarulo A, Thomas C, Gioiello A, Une M, Hofmann AF, Saladin R, et al. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J Med Chem. 2008;51:1831–41.

    CAS  PubMed  Google Scholar 

  35. Gohlke H, Schmitz B, Sommerfeld A, Reinehr R, Häussinger D. alpha5 beta1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology. 2013;57:1117–29.

    CAS  PubMed  Google Scholar 

  36. Häussinger D, Kurz AK, Wettstein M, Graf D, Vom Dahl S, Schliess F. Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis. Gastroenterology. 2003;124:1476–87.

    PubMed  Google Scholar 

  37. Sommerfeld A, Reinehr R, Häussinger D. Tauroursodeoxycholate protects rat hepatocytes from bile acid-induced apoptosis via beta1-integrin- and protein kinase A-dependent mechanisms. Cell Physiol Biochem. 2015;36:866–83.

    CAS  PubMed  Google Scholar 

  38. Becker S, Reinehr R, Graf D, vom DS, Häussinger D. Hydrophobic bile salts induce hepatocyte shrinkage via NADPH oxidase activation. Cell Physiol Biochem. 2007;19:89–98.

    CAS  PubMed  Google Scholar 

  39. Becker S, Reinehr R, Grether-Beck S, Eberle A, Häussinger D. Hydrophobic bile salts trigger ceramide formation through endosomal acidification. BiolChem. 2007;388:185–96.

    CAS  Google Scholar 

  40. Graf D, Kurz AK, Fischer R, Reinehr R, HÑussinger D. Taurolithocholic acid-3 sulfate induces CD95 trafficking and apoptosis in a c-Jun N-terminal kinase-dependent manner. Gastroenterology. 2002;122:1411–27.

    CAS  PubMed  Google Scholar 

  41. Häussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F. Molecular aspects of medicine: from experimental to clinical hepatology. Mol Aspects Med. 2004;25:221–360.

    PubMed  Google Scholar 

  42. Reinehr R, Becker S, Keitel V, Eberle A, Grether-Beck S, Häussinger D. Bile salt-induced apoptosis involves NADPH oxidase isoform activation. Gastroenterology. 2005;129:2009–31.

    CAS  PubMed  Google Scholar 

  43. Reinehr R, Becker S, Wettstein M, Häussinger D. Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology. 2004;127:1540–57.

    CAS  PubMed  Google Scholar 

  44. Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One. 2010;5:e12403.

    PubMed  PubMed Central  Google Scholar 

  45. Offermanns S. G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol. 2003;83:101–30.

    CAS  PubMed  Google Scholar 

  46. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3:639–50.

    CAS  PubMed  Google Scholar 

  47. Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev. 2005;85:1159–204.

    CAS  PubMed  Google Scholar 

  48. Lavoie B, Balemba OB, Godfrey C, Watson CA, Vassileva G, Corvera CU, Nelson MT, et al. Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol. 2010;588:3295–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA, et al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol. 2013;304:G1013–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Perino A, Pols TW, Nomura M, Stein S, Pellicciari R, Schoonjans K. TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation. J Clin Invest. 2014;124:5424–36.

    PubMed  PubMed Central  Google Scholar 

  51. Rajagopal S, Kumar DP, Mahavadi S, Bhattacharya S, Zhou R, Corvera CU, Bunnett NW, et al. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/rho kinase pathway. Am J Physiol Gastrointest Liver Physiol. 2013;304:G527–35.

    CAS  PubMed  Google Scholar 

  52. Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubitz R, Ullmer C, et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut. 2016;65:487–501.

    CAS  PubMed  Google Scholar 

  53. Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology. 2009;50:861–70.

    CAS  PubMed  Google Scholar 

  54. Keitel V, Gorg B, Bidmon HJ, Zemtsova I, Spomer L, Zilles K, Haussinger D. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia. 2010;58:1794–805.

    PubMed  Google Scholar 

  55. Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14:747–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun. 2008;372:78–84.

    CAS  PubMed  Google Scholar 

  58. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Gorg B, Selbach O, Häussinger D, et al. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology. 2007;45:695–704.

    CAS  PubMed  Google Scholar 

  59. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9.

    CAS  PubMed  Google Scholar 

  60. Lieu T, Jayaweera G, Zhao P, Poole DP, Jensen D, Grace M, McIntyre P, et al. The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology. 2014;147:1417–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong J, Behar J, Wands J, Resnick M, Wang LJ, DeLellis RA, Lambeth D, et al. Role of a novel bile acid receptor TGR5 in the development of oesophageal adenocarcinoma. Gut. 2010;59:170–80.

    CAS  PubMed  Google Scholar 

  62. Martin RE, Bissantz C, Gavelle O, Kuratli C, Dehmlow H, Richter HG, Obst Sander U, et al. 2-Phenoxy-nicotinamides are potent agonists at the bile acid receptor GPBAR1 (TGR5). ChemMedChem. 2013;8:569–76.

    CAS  PubMed  Google Scholar 

  63. Cao H, Chen ZX, Wang K, Ning MM, Zou QA, Feng Y, Ye YL, et al. Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect. Sci Rep. 2016;6:28676.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Duan H, Ning M, Zou Q, Ye Y, Feng Y, Zhang L, Leng Y, et al. Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. J Med Chem. 2015;58:3315–28.

    CAS  PubMed  Google Scholar 

  65. Gertzen CG, Spomer L, Smits SH, Haussinger D, Keitel V, Gohlke H. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur J Med Chem. 2015;104:57–72.

    CAS  PubMed  Google Scholar 

  66. Katritch V, Cherezov V, Stevens RC. Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013;53:531–56.

    CAS  PubMed  Google Scholar 

  67. Maruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, et al. Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-bar) in mice. J Endocrinol. 2006;191:197–205.

    CAS  PubMed  Google Scholar 

  68. Vassileva G, Golovko A, Markowitz L, Abbondanzo SJ, Zeng M, Yang S, Hoos L, et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J. 2006;398:423–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Keitel V, Spomer L, Marin JJ, Williamson C, Geenes V, Kubitz R, Häussinger D, et al. Effect of maternal cholestasis on TGR5 expression in human and rat placenta at term. Placenta. 2013;34:810–6.

    CAS  PubMed  Google Scholar 

  70. Duboc H, Tolstanova G, Yuan PQ, Wu VS, Kaji I, Biraud M, Akiba Y, et al. Reduction of epithelial secretion in male rat distal colonic mucosa by bile acid receptor TGR5 agonist, INT-777: role of submucosal neurons. Neurogastroenterol Motil. 2016;28:1663–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Keitel V, Ullmer C, Häussinger D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol Chem. 2010;391:785–9.

    CAS  PubMed  Google Scholar 

  72. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol. 2011;25:1066–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, et al. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil. 2010;22:814–825, e227–818.

    Google Scholar 

  74. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329:386–90.

    CAS  PubMed  Google Scholar 

  75. Ullmer C, Alvarez Sanchez R, Sprecher U, Raab S, Mattei P, Dehmlow H, Sewing S, et al. Systemic bile acid sensing by G protein-coupled bile acid receptor 1 (GPBAR1) promotes PYY and GLP-1 release. Br J Pharmacol. 2013;169:671–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, et al. G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J Am Soc Nephrol. 2016;27:1362–78.

    CAS  PubMed  Google Scholar 

  77. Kumar DP, Asgharpour A, Mirshahi F, Park SH, Liu S, Imai Y, Nadler JL, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet alpha cells to promote glucose homeostasis. J Biol Chem. 2016;291:6626–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun. 2012;427:600–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ward JB, Mroz MS, Keely SJ. The bile acid receptor, TGR5, regulates basal and cholinergic-induced secretory responses in rat colon. Neurogastroenterol Motil. 2013;25:708–11.

    CAS  PubMed  Google Scholar 

  80. Keitel V, Häussinger D. TGR5 in cholangiocytes. Curr Opin Gastroenterol. 2013;29:299–304.

    CAS  PubMed  Google Scholar 

  81. Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1319–25. https://doi.org/10.1016/j.bbadis.2017.08.021.

    Article  CAS  PubMed  Google Scholar 

  82. Keitel V, Häussinger D. Role of TGR5 (GPBAR1) in liver disease. Semin Liver Dis. 2018;38:333–9. https://doi.org/10.1055/s-0038-1669940.

    Article  CAS  PubMed  Google Scholar 

  83. Sawitza I, Kordes C, Gotze S, Herebian D, Haussinger D. Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep. 2015;5:13320.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Klindt C, Reich M, Hellwig B, Stindt J, Rahnenfuhrer J, Hengstler JG, Kohrer K, Schoonjans K, Häussinger D, Keitel V. The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signaling in liver. Cells 8. 2019; https://doi.org/10.3390/cells8111467.

  85. McMillin M, Frampton G, Tobin R, Dusio G, Smith J, Shin H, Newell-Rogers K, et al. TGR5 signaling reduces neuroinflammation during hepatic encephalopathy. J Neurochem. 2015;135:565–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP, Murphy JE, et al. The bile acid receptor TGR5 does not interact with beta-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts. J Biol Chem. 2013;288:22942–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Donepudi AC, Boehme S, Li F, Chiang JY. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology. 2016;65:813–27.

    PubMed  PubMed Central  Google Scholar 

  88. Keitel V, Reich M, Häussinger D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin Rev Allergy Immunol. 2015;48:218–25.

    CAS  PubMed  Google Scholar 

  89. Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem. 2009;52:7958–61.

    CAS  PubMed  Google Scholar 

  90. Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP. The biliary HCO(3)(−) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology. 2010;52:1489–96.

    CAS  PubMed  Google Scholar 

  91. Beuers U, Maroni L, Elferink RO. The biliary HCO(3)(-) umbrella: experimental evidence revisited. Curr Opin Gastroenterol. 2012;28:253–7.

    CAS  PubMed  Google Scholar 

  92. Hohenester S, Wenniger LM, Paulusma CC, van Vliet SJ, Jefferson DM, Elferink RP, Beuers U. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology. 2012;55:173–83.

    CAS  PubMed  Google Scholar 

  93. Maillette de Buy Wenniger LJ, Hohenester S, Maroni L, van Vliet SJ, Oude Elferink RP, Beuers U. The cholangiocyte glycocalyx stabilizes the ‘biliary HCO3 umbrella’: an integrated line of defense against toxic bile acids. Dig Dis. 2015;33:397–407.

    PubMed  Google Scholar 

  94. Pean N, Doignon I, Garcin I, Besnard A, Julien B, Liu B, Branchereau S, et al. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology. 2013;58:1451–60.

    CAS  PubMed  Google Scholar 

  95. Reich M, Klindt C, Deutschmann K, Spomer L, Häussinger D, Keitel V. Role of the G protein-coupled bile acid receptor TGR5 in liver damage. Dig Dis. 2017;35:235–40.

    PubMed  Google Scholar 

  96. Briere DA, Ruan X, Cheng CC, Siesky AM, Fitch TE, Dominguez C, Sanfeliciano SG, et al. Novel small molecule agonist of TGR5 possesses anti-diabetic effects but causes gallbladder filling in mice. PLoS One. 2015;10:e0136873.

    PubMed  PubMed Central  Google Scholar 

  97. Duan H, Ning M, Chen X, Zou Q, Zhang L, Feng Y, Zhang L, et al. Design, synthesis, and antidiabetic activity of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carboxamide derivatives as potent and orally efficacious TGR5 agonists. J Med Chem. 2012;55:10475–89.

    CAS  PubMed  Google Scholar 

  98. Maurer KJ, Carey MC, Fox JG. Roles of infection, inflammation, and the immune system in cholesterol gallstone formation. Gastroenterology. 2009;136:425–40.

    CAS  PubMed  Google Scholar 

  99. Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V, Kleinebrecht L, Schupp AK, et al. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol. 2013;94:1253–64.

    PubMed  Google Scholar 

  100. Wang YD, Chen WD, Yu D, Forman BM, Huang W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology. 2011;54:1421–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hogenauer K, Arista L, Schmiedeberg N, Werner G, Jaksche H, Bouhelal R, Nguyen DG, et al. G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. J Med Chem. 2014;57:10343–54.

    CAS  PubMed  Google Scholar 

  102. Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT, Higuchi H, Matsuoka K, et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology. 2012;136:153–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Perino A, Schoonjans K. TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol Sci. 2015;36:847–57.

    CAS  PubMed  Google Scholar 

  104. McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 2013;288:11761–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Angelin B, Bjorkhem I, Einarsson K, Ewerth S. Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J Clin Invest. 1982;70:724–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Einarsson K, Alvelius G, Hillebrant CG, Reihner E, Bjorkhem I. Concentration of unsulfated lithocholic acid in portal and systemic venous plasma: evidence that lithocholic acid does not down regulate the hepatic cholesterol 7 alpha-hydroxylase activity in gallstone patients. Biochim Biophys Acta. 1996;1317:19–26.

    PubMed  Google Scholar 

  107. Fukushima K, Ichimiya H, Higashijima H, Yamashita H, Kuroki S, Chijiiwa K, Tanaka M. Regulation of bile acid synthesis in the rat: relationship between hepatic cholesterol 7 alpha-hydroxylase activity and portal bile acids. J Lipid Res. 1995;36:315–21.

    CAS  PubMed  Google Scholar 

  108. Kida T, Tsubosaka Y, Hori M, Ozaki H, Murata T. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33:1663–9.

    CAS  PubMed  Google Scholar 

  109. Harbrecht BG, Wu B, Watkins SC, Marshall HP Jr, Peitzman AB, Billiar TR. Inhibition of nitric oxide synthase during hemorrhagic shock increases hepatic injury. Shock. 1995;4:332–7.

    CAS  PubMed  Google Scholar 

  110. Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46:927–34.

    CAS  PubMed  Google Scholar 

  111. Theodorakis NG, Wang YN, Skill NJ, Metz MA, Cahill PA, Redmond EM, Sitzmann JV. The role of nitric oxide synthase isoforms in extrahepatic portal hypertension: studies in gene-knockout mice. Gastroenterology. 2003;124:1500–8.

    CAS  PubMed  Google Scholar 

  112. Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet. 1991;337:776–8.

    CAS  PubMed  Google Scholar 

  113. Renga B, Cipriani S, Carino A, Simonetti M, Zampella A, Fiorucci S. Reversal of endothelial dysfunction by GPBAR1 agonism in portal hypertension involves a AKT/FOXOA1 dependent regulation of H2S generation and endothelin-1. PLoS One. 2015;10:e0141082.

    PubMed  PubMed Central  Google Scholar 

  114. Reinehr R, Fischer R, Häussinger D. Regulation of endothelin-a receptor sensitivity by cyclic adenosine monophosphate in rat hepatic stellate cells. Hepatology. 2002;36:861–73.

    CAS  PubMed  Google Scholar 

  115. Erice O, Labiano I, Arbelaiz A, Santos-Laso A, Munoz-Garrido P, Jimenez-Aguero R, Olaizola P, Caro-Maldonado A, Martin-Martin N, Carracedo A, Lozano E, Marin JJ, O'Rourke CJ, Andersen JB, Llop J, Gomez-Vallejo V, Padro D, Martin A, Marzioni M, Adorini L, Trauner M, Bujanda L, Perugorria MJ, Banales JM. Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1335–44. https://doi.org/10.1016/j.bbadis.2017.08.016.

    Article  CAS  PubMed  Google Scholar 

  116. Masyuk TV, Masyuk AI, LaRusso NF. TGR5 in the cholangiociliopathies. Dig Dis. 2015;33:420–5.

    PubMed  PubMed Central  Google Scholar 

  117. Masyuk TV, Masyuk AI, Lorenzo Pisarello M, Howard BN, Huang BQ, Lee PY, Fung X, Sergienko E, Ardecky RJ, Chung TDY, Pinkerton AB, LaRusso NF. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Galphas signaling. Hepatology. 2017;66:1197–218. https://doi.org/10.1002/hep.29284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Keitel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keitel, V. et al. (2020). Bile Acids and TGR5 (Gpbar1) Signaling. In: Rozman, D., Gebhardt, R. (eds) Mammalian Sterols . Springer, Cham. https://doi.org/10.1007/978-3-030-39684-8_4

Download citation

Publish with us

Policies and ethics