Skip to main content

Simulation Comes of Age

  • Chapter
  • First Online:
Computer Meets Theoretical Physics

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

As we saw earlier on, once the soundness of the basic ideas had been checked, most results obtained from computer simulation in the first few years, both in Monte Carlo and in molecular dynamics, consisted in studying a few interesting kinds of behaviour (such as phase transitions) of ideal systems (hard spheres, rigid disks), or in the simulation of realistic models of more and more complex physical systems (from argon atoms to water molecules, down to the first attempts to reconstruct large biological molecules)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    W.G. Hoover , F.H. Ree , Use of Computer Experiments to Locate the Melting Transition and Calculate the Entropy in the Solid Phase, Journal of Chemical Physics 47, 4873 (1967); W.G. Hoover , F.H. R, Melting Transition and Communal Entropy for Hard Spheres, Journal of Chemical Physics 49, 3609, 1968.

  2. 2.

    W.G. Hoover , From Ann Arbor to Sheffield: Around the World in 80 Years. I.; Yokohama to Ruby Valley, Computational Methods in Science and Technology 23, 133, 2017.

  3. 3.

    J. Hansen , L. Verlet , Phase Transitions of the Lennard-Jones System, Physical Review 184, 151, 1969.

  4. 4.

    J.P. Valleau , D.N. Card , Monte Carlo Estimation of the Free Energy by Multistage Sampling, Journal of Chemical Physics 57, 5457, 1972; G. Torrie , J.P. Valleau , A. Bain, Monte Carlo estimation of communal entropy, Journal of Chemical Physics 58, 5479, 1973; G. Torrie , J.P. Valleau , Monte Carlo Free Energy Estimates Using Non-Boltzmann Sampling: Application to the Sub-Critical Lennard-Jones Fluid, Chemical Physics Letters 28, 578, 1974.

  5. 5.

    C.H. Bennett , B.J. Alder , Studies in Molecular Dynamics IX. Vacancies in Hard Sphere Crystals, Journal of Chemical Physics 54, 4769, 1971.

  6. 6.

    C.H. Bennett , Mass Tensor Molecular Dynamics, Journal of Computational Physics 19, 267, 1975.

  7. 7.

    C.H. Bennett , Efficient Estimation of Free Energy Differences from Monte Carlo Data, Journal of Computational Physics 22, 245, 1976.

  8. 8.

    G.M. Torrie and J.P. Valleau , Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling, Journal of Computational Physics 23, 187, 1977.

  9. 9.

    Letter from G.M. Torrie to G. Ciccotti , February 2019.

  10. 10.

    H.C. Andersen , Molecular dynamics simulations at constant pressure and/or temperature, Journal of Chemical Physics 72, 2384, 1980.

  11. 11.

    This and the two following quotes come from a letter from H.C. Andersen to G. Ciccotti , December 2018.

  12. 12.

    H.C. Andersen , Molecular dynamics simulations at constant pressure and/or temperature, cited in note 10.

  13. 13.

    This quote and the following are taken from the letter H.C. Andersen to G. Ciccotti , see note 11.

  14. 14.

    D. MacKernan, Feature Interview, Michele Parrinello , in: SIMU. Challenges in Molecular Simulations, Newsletter, Issue 2, November 2000, p. 7; https://www.researchgate.net/publication/267979729_SIMU_Challenges_in_Molecular_Simulations_Bridging_the_Length-_and_Timescales_gap_Volume_2.

  15. 15.

    M. Parrinello , A. Rahman , Crystal Structure and Pair Potentials: A Molecular-Dynamics Study, Physical Review Letters 45, 1196, 1980.

  16. 16.

    Y. Kataoka , M.L. Klein , Shuichi Nosé , Physics Today, February 2006, pp. 67–68.

  17. 17.

    S. Nosé , A molecular-dynamics method for simulations in the canonical ensemble, Molecular Physics 52, 255, 1984; S. Nosé , A unified formulation of the constant temperature molecular-dynamics methods, Journal of Chemical Physics 81, 511, 1984.

  18. 18.

    W.G. Hoover , Canonical dynamics: Equilibrium phase-space distributions, Physical Review A 31, 1695, 1985.

  19. 19.

    W.G. Hoover , Nosé Shuichi , 17 June 195117 August 2005, In Memoriam, http://www.williamhoover.info/nose.pdf.

  20. 20.

    This quote and the following one come from a letter from H.C. Andersen to G. Ciccotti , dated December 2018.

  21. 21.

    H.C. Andersen et al., New Molecular Dynamics Methods for Various Ensembles, CECAM Workshop (Orsay, August 20 - September 1, 1984), CECAM, Orsay 1984, p. 86.

  22. 22.

    D. Frenkel , private communication addressed to G. Ciccotti , December 2018.

  23. 23.

    D. Frenkel , J.P. McTague , Evidence for an orientationally ordered two dimensional fluid phase from Molecular Dynamics calculations, Physical Review Letters 42, 1632, 1979.

  24. 24.

    This and the following quote from D. Frenkel , private communication addressed to G. Ciccotti , December 2018.

  25. 25.

    H.N.W. Lekkerkerker , Daan Frenkel and the Spinoza Prize, in: SIMU. Challenges in Molecular Simulations, Newsletter, Issue 2, November 2000, p. 1; https://www.researchgate.net/publication/267979729_SIMU_Challenges_in_Molecular_Simulations_Bridging_the_Length-_and_Timescales_gap_Volume_2.

  26. 26.

    D. Frenkel , private communication addressed to G. Ciccotti , December 2018.

  27. 27.

    D. Frenkel , J.F. Maguire, Molecular Dynamics study of the dynamical properties of an assembly of infinitely thin hard rods, Molecular Physics 49, 503, 1983; D. Frenkel , B.M. Mulder , J.P. McTague , Phase diagram of a system of hard ellipsoids, Physical Review Letters 52, 287, 1984; D. Frenkel , B.M. Mulder , J.P. McTague , Phase diagram of hard ellipsoids of revolution, Molecular Crystals and Liquid Crystals 123, 119, 1985.

  28. 28.

    D. Frenkel , A.J.C. Ladd , New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres, Journal of Chemical Physics 81, 3188, 1984.

  29. 29.

    This quote and the following come from M. Parrinello , in D. Mac Kernan, cited in note 14.

  30. 30.

    R. Car , M. Parrinello , Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters 55, 2471, 1985.

  31. 31.

    This quote and the following come from A.Z. Panagiotopoulos , private communication addressed to G. Ciccotti , December 2018.

  32. 32.

    A.Z. Panagiotopoulos , U.W. Suter, R.C. Reid , Phase diagrams of non-ideal fluid mixtures from Monte-Carlo simulation, Industrial & Engineering Chemistry Fundamentals 25, 525, 1986.

  33. 33.

    A.Z. Panagiotopoulos , Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Molecular Physics 61, 813, 1987.

  34. 34.

    A.Z. Panagiotopoulos , Adsorption and capillary condensation of fluids in cylindrical pores by Monte Carlo simulation in the Gibbs ensemble, Molecular Physics 62, 701, 1987.

  35. 35.

    A.Z. Panagiotopoulos , N. Quirke , M. Stapleton , D. J. Tildesley , Phase equilibria by simulation in the Gibbs ensemble: alternative derivation, generalization and application to mixture and membrane equilibria, Molecular Physics 63, 527, 1988.

  36. 36.

    T. Yamamoto , Quantum Statistical Mechanical Theory of the Rate of Exchange Chemical Reactions in the Gas Phase, Journal of Chemical Physics 33, 281, 1960.

  37. 37.

    J.C. Keck , Variational Theory of Chemical Reaction Rates Applied to Three-Body Recombinations, Journal of Chemical Physics 32, 1035, 1960.

  38. 38.

    J.B. Anderson , Statistical theories of chemical reactions. Distributions in the transition region, Journal of Chemical Physics 58, 4684, 1973.

  39. 39.

    D. Chandler , Statistical mechanics of isomerization dynamics in liquids and the transition state approximation, Journal of Chemical Physics 68, 2959, 1978.

  40. 40.

    G. Ciccotti , M. Ferrario , J. T. Hynes , R. Kapral , Molecular Dynamics Simulation of Ion Association Reactions in a Polar Solvent, Journal de Chimie Physique 85, 925, 1988; G. Ciccotti , M. Ferrario , J. T. Hynes , R. Kapral , Constrained Molecular Dynamics and the Mean Potential for an Ion Pair in a Polar Solvent, Journal of Chemical Physics 129, 241, 1973.

  41. 41.

    E.A. Carter , G. Ciccotti , J.T. Hynes , R. Kapral , Constrained Reaction Coordinate Dynamics for the Simulation of Rare Events, Chemical Physics Letters 156, 472, 1989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Ciccotti .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Battimelli, G., Ciccotti, G., Greco, P. (2020). Simulation Comes of Age. In: Computer Meets Theoretical Physics. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-39399-1_6

Download citation

Publish with us

Policies and ethics