Skip to main content

Intracranial Pressure (ICP): Theoretical and Practical Aspects

  • Chapter
  • First Online:
Management of Severe Traumatic Brain Injury
  • 1498 Accesses

Abstract

Monitoring of intracranial pressure (ICP) is a valuable adjunct in the management of severe traumatic brain injury and can help reduce secondary brain injury due to elevated ICP and/or reduced cerebral perfusion pressure. In this chapter, we discuss the indications, available devices, and analysis of ICP monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alali AS, Fowler RA, Mainprize TG, Scales DC, Kiss A, de Mestral C, Ray JG, Nathens AB. Intracranial pressure monitoring in severe traumatic brain injury: results from the American College of Surgeons Trauma Quality Improvement Program. J Neurotrauma. 2013;30:1737–46.

    Article  Google Scholar 

  • Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T. MR–Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology. 2000;217(3):877–85.

    Article  CAS  Google Scholar 

  • Al-Tamimi YZ, Helmy A, Bavetta S, Price SJ. Assessment of zero drift in the Codman intracranial pressure monitor: a study from 2 neurointensive care units. Neurosurgery. 2009;64(1):94–8.

    Article  Google Scholar 

  • Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62(1):45–51.

    Article  Google Scholar 

  • Brady KM, Lee JK, Kibler KK, Easley RB, Koehler RC, Shaffner DH. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure. Stroke. 2008;39(9):2531–37.

    Google Scholar 

  • Castellani G, Zweifel C, Kim DJ, Carrera E, Radolovich DK, Smielewski P, Hutchinson PJ, Pickard JD, Czosnyka M. Plateau waves in head injured patients requiring neurocritical care. Neurocrit Care. 2009;11:143–50.

    Article  Google Scholar 

  • Chambers IR, Kane PJ, Signorini DF, Jenkins A, Mendelow AD. Bilateral ICP monitoring: its importance in detecting the severity of secondary insults. Acta Neurochir Suppl. 1998;71:42–3.

    CAS  PubMed  Google Scholar 

  • Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.

    Article  CAS  Google Scholar 

  • Citerio G, Piper I, Chambers IR, Galli D, Enblad P, Kiening K, Ragauskas A, Sahuquillo J, Gregson B, BrainIT Group. Multicenter clinical assessment of the Raumedic Neurovent-P intracranial pressure sensor: a report by the BrainIT group. Neurosurgery. 2008;63(6):1152–8.

    Article  Google Scholar 

  • Czosnyka M, Czosnyka Z, Smielewski P. Pressure reactivity index: journey through the past. Acta Neurochir. 2017;159(11):2063–5.

    Article  Google Scholar 

  • Eide PK, Brean A. Lumbar cerebrospinal fluid pressure waves versus intracranial pressure waves in idiopathic normal pressure hydrocephalus. Br J Neurosurg. 2006;20(6):407–14.

    Article  CAS  Google Scholar 

  • Eide PK, Kerty E. Static and pulsatile intracranial pressure in idiopathic intracranial hypertension. Clin Neurol Neurosurg. 2011;113:123–8.

    Article  Google Scholar 

  • Fan JY, Kirkness C, Vicini P, Burr R, Mitchell P. Intracranial pressure waveform morphology and intracranial adaptive capacity. Am J Crit Care. 2008;17(6):545–54.

    Article  Google Scholar 

  • Fernandes HM, Bingham K, Chambers IR, Mendelow AD. Clinical evaluation of the Codman microsensor intracranial pressure monitoring system. Acta Neurochir Suppl. 1998;71:44–6.

    CAS  PubMed  Google Scholar 

  • Guillaume J, Janny P. Continous intracranial manometry; importance of the method and first results. Rev Neurol (Paris). 1951;84(2):131–42.

    CAS  Google Scholar 

  • Guyott LL, Dowling C, Diaz FG, Michael DB. Cerebral monitoring devices: analysis of complications. Acta Neurochir Suppl. 1998;71:47–9.

    Google Scholar 

  • Johnston IH, Jennet B. The place of continuous intracranial pressure monitoring in neurosurgical practice. Acta Neurochir. 1973;29:53–63.

    Article  CAS  Google Scholar 

  • Key A, Retzius G. Studies in der Anatomie des Nerven system und der Bindesgewebes. Stockholm: Bd. I. Samson & Wallin; 1875.

    Google Scholar 

  • Knoll PH. Uber die Druckschwankungen in der Cerebrospinalflussigkeit und den Wechsel in der Blutfulle des centralen Nervensystems. Sitzungs-berichte der Kaiserlichen Akademie der Wissenschaften; 1886. p. 217–246.

    Google Scholar 

  • Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–38.

    Article  CAS  Google Scholar 

  • Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007;68(2):155–8.

    Article  CAS  Google Scholar 

  • Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Neurol Scand. 1960;1(Supplement 149):193.

    Google Scholar 

  • Narayan RK, Kishore PR, Becker DP, Ward JD, Enas GG, Greenberg RP, Domingues Da Silva A, Lipper MH, Choi SC, Mayhall CG, Lutz HA 3rd, Young HF. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56(5):650–9.

    Article  CAS  Google Scholar 

  • Newcombe VFJ, Hawkes RC, Harding SG, Willcox R, Brock S, Hutchinson PJ, Menon DK, Carpenter TA, Coles JP. Potential heating caused by intracranial pressure transducers in a 3-Tesla magnetic resonance imaging system using a body radiofrequency resonator: assessment of the Codman MicroSensor transducer. J Neurosurg. 2008;109:159–64.

    Article  Google Scholar 

  • Nordström CH, Reinstrup P, Xu W, Gärdenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98(4):809–14.

    Article  Google Scholar 

  • Piccinini A, Lewis M, Benjamin E, Aiolfi A, Inaba K, Demetriades D. Intracranial pressure monitoring in severe traumatic brain injuries: a closer look at the level 1 trauma centers in the United States. Injury. 2017;48(9):1944–50.

    Article  Google Scholar 

  • Quincke HI. Verhandlungen des Congresses für Innere Medizin, Zehnter Congress. Wiesbaden. 1891;10:321–31.

    Google Scholar 

  • Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;15:506–15.

    Article  Google Scholar 

  • Rao V, Klepstad P, Kristian Losvik O, Solheim O. Confusion with cerebral perfusion pressure in a literature review of current guidelines and survey of clinical practise. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2013;21(1).

    Google Scholar 

  • Reinstrup P, Unnerbäck M, Marklund N, Schalen W, Cabrera Arrocha J, Bloomfield EL, Sadegh V, Hesselgard K. Best zero level for external ICP transducer. Acta Neurochir. 2019;161(4):635–42.

    Article  Google Scholar 

  • Robba C, Santori G, Czosnyka M, Corradi F, Bragazzi N, Padayachy L, Taccone FS, Citerio G. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2018;44:1284–94.

    Article  Google Scholar 

  • Rosenwasser RH, Kleiner LI, Krzeminski JP, Buchheit WA. Intracranial pressure monitoring in the posterior fossa: a preliminary report. J Neurosurg. 1989;71(4):503–5.

    Article  CAS  Google Scholar 

  • Rossi S, Buzzi F, Paparella A, Mainini P, Stocchetti N. Complications and safety associated with ICP monitoring: a study of 542 patients. Acta Neurochir Suppl. 1998;71:91–3.

    CAS  PubMed  Google Scholar 

  • Sahu S, Swain A. Optic nerve sheath diameter: a novel way to monitor the brain. J Neuroanaesthesiol Crit Care. 2017;4(Suppl S1):13–8.

    Google Scholar 

  • Sakowitz OW, Raabe A, Vucak D, Kiening KL, Unterberg AW. Contemporary management of aneurysmal subarachnoid hemorrhage in Germany: results of a survey among 100 neurosurgical departments. Neurosurgery. 2006;58(1):137–45.

    Article  Google Scholar 

  • Schmidt B, Czosnyka M, Klingelhöfer J. Clinical applications of a non-invasive ICP monitoring method. Eur J Ultrasound. 2002;16(1–2):37–45.

    Article  Google Scholar 

  • Shapiro K, Morris WJ, Teo C. Intracranial hypertension: mechanisms and management. In: Cheek WR, Marlin AE, McLone DG, et al., editors. Pediatric neurosurgery: surgery of the developing nervous system. 3rd ed. Philadelphia: Saunders; 1994. p. 307–19.

    Google Scholar 

  • Shimbles S, Dodd C, Banister K, Mendelow AD, Chambers IR. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol Meas. 2005;26(6):1085–92.

    Article  CAS  Google Scholar 

  • Slavin KV, Misra M. Infratentorial intracranial pressure monitoring in neurosurgical intensive care unit. Neurol Res. 2003;25(8):880–4.

    Article  Google Scholar 

  • Spiegelberg A, Preuss M, Kurtcuoglu V. B-waves revisited. Interdicip Neurosurg. 2016;6:13–7.

    Google Scholar 

  • Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Critical Care Medicine. 2001;30(4):733–8.

    Google Scholar 

  • Unnerbäck M, Bloomfield E, Söderström S, Reinstrup P. The intracranial pressure curve correlates to the pulsatile component of cerebral blood flow. J Clin Monit Comput. 2019;33(1):77–83. https://doi.org/10.1007/s10877-018-0129-0.

  • Unnerbäck M, Ottesen J, Reinstrup P. ICP curve morphology and intracranial flow-volume changes: a simultaneous ICP and cine phase contrast MRI study in humans. Acta Neurochirurgica (Wien). 2018;160:219–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Reinstrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reinstrup, P. (2020). Intracranial Pressure (ICP): Theoretical and Practical Aspects. In: Sundstrøm, T., Grände, PO., Luoto, T., Rosenlund, C., Undén, J., Wester, K. (eds) Management of Severe Traumatic Brain Injury. Springer, Cham. https://doi.org/10.1007/978-3-030-39383-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39383-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39382-3

  • Online ISBN: 978-3-030-39383-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics