Skip to main content

Naturally and Environmentally Driven Variations in Diatom Morphology: Implications for Diatom-Based Assessment of Water Quality

  • Chapter
  • First Online:
Modern Trends in Diatom Identification

Part of the book series: Developments in Applied Phycology ((DAPH,volume 10))

Abstract

Diatom identification must consider the large variability in both morphological and morphometric features, characteristic of this group of microorganisms. This chapter describes variations in shape/size observed in diatom populations either as a consequence of their particular asexual reproductive cycle or induced by environmental conditions. Concerning this latter, teratological diatoms are commonly associated with a variety of environmental stressors, particularly the presence of micropollutants in the aquatic ecosystem, such as heavy metals. We evidence an overestimation of water quality conditions caused by overriding deformed individuals in diatom-based biomonitoring studies. It can be shown that normal and aberrant forms of the same taxon differ in autecological preferences. Finally, we advise on a critical issue in the description of diatom specimens, that is, the sample size on which morphometric ranges should be provided. The section concludes with some recommendations in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Falasco, E., Bona, F., Ginepro, M., Hlúbiková, D., Hoffmann, L., Ector, L.: Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA. 35(5), 595–606 (2009)

    Google Scholar 

  2. Lenarczyk, J., et al.: Palaeoecological implications of the subfossil Pediastrum argentinense-type in Europe. Rev. Palaeobot. Palynol. 222, 129–138 (2015)

    Article  Google Scholar 

  3. Barinova, S.: Aberrant forms of algae and bioindication of aquatic ecosystem state. Int. J. Oceanogr. Aquac. 1(3), 1–7 (2017)

    Google Scholar 

  4. Munnecke, A., Delabroye, A., Servais, T., Vandenbroucke, T.R., Vecoli, M.: Systematic occurrences of malformed (teratological) acritarchs in the run-up of Early Palaeozoic δ13C isotope excursions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 367, 137–146 (2012)

    Article  Google Scholar 

  5. Falasco, E., Bona, F., Badino, G., Hoffmann, L., Ector, L.: Diatom teratological forms and environmental alterations: a review. Hydrobiologia. 623(1), 1–35 (2009)

    Article  CAS  Google Scholar 

  6. Olenici, A., Blanco, S., Borrego-Ramos, M., Jiménez-Gómez, F., Guerrero, F., Momeu, L., Baciu, C.: A new diatom teratology driven by metal pollution in a temperate river (Roșia Montanǎ, Romania). Ann. Bot. 9, 113–118 (2019)

    Google Scholar 

  7. Vartanian, M., Desclés, J., Quinet, M., Douady, S., Lopez, P.J.: Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum. New Phytol. 182(2), 429–442 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. Leguay, S., Lavoie, I., Levy, J.L., Fortin, C.: Using biofilms for monitoring metal contamination in lotic ecosystems: the protective effects of hardness and pH on metal bioaccumulation. Environ. Toxicol. Chem. 35(6), 1489–1501 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. da Silva, E.F., et al.: Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Sci. Total Environ. 407(21), 5620–5636 (2009)

    Article  CAS  Google Scholar 

  10. Koreneva, T., Latkovskaya, E.: Teratological forms of diatomic algae in alga-flora of the Lake Teletskoye (Russian Altai). Water Chem. Ecol. 10, 112–119 (2013)

    Google Scholar 

  11. Majewska, R., Zgrundo, A., Lemke, P., De Stefano, M.: Benthic diatoms of the Vistula River estuary (Northern Poland): seasonality, substrata preferences and the influence of water chemistry. Phycol. Res. 60(1), 1–19 (2012)

    Article  CAS  Google Scholar 

  12. Masmoudi, S., et al.: Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell—a review. Cryptogam. Algol. 34(2), 185–225 (2013)

    Article  Google Scholar 

  13. Arini, A., Durant, F., Coste, M., Delmas, F., Feurtet-Mazel, A.: Cadmium decontamination and reversal potential of teratological forms of the diatom Planothidium frequentissimum (Bacillariophyceae) after experimental contamination. J. Phycol. 49(2), 361–370 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. Pandey, L.K., et al.: The use of diatoms in ecotoxicology and bioassessment: insights, advances and challenges. Water Res. 118, 39–58 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. Pandey, L.K., Bergey, E.A.: Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Sci. Total Environ. 550, 372–381 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. Tiam, S.K., Lavoie, I., Doose, C., Hamilton, P.B., Fortin, C.: Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress. Ecotoxicology. 27(6), 675–688 (2018)

    Article  CAS  Google Scholar 

  17. Pandey, L.K., Kumar, D., Yadav, A., Rai, J., Gaur, J.: Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecol. Indic. 36, 272–279 (2014)

    Article  CAS  Google Scholar 

  18. Morin, S., et al.: Consistency in diatom response to metal-contaminated environments. In: Emerging and Priority Pollutants in Rivers, pp. 117–146. Springer, Berlin (2006)

    Google Scholar 

  19. Luís, A.T., Teixeira, P., Almeida, S.F.P., Matos, J.X., da Silva, E.F.: Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci. Total Environ. 409(20), 4312–4325 (2011)

    Article  PubMed  CAS  Google Scholar 

  20. Barral-Fraga, L., Morin, S., Rovira, M.D., Urrea, G., Magellan, K., Guasch, H.: Short-term arsenic exposure reduces diatom cell size in biofilm communities. Environ. Sci. Pollut. Res. 23(5), 4257–4270 (2016)

    Article  CAS  Google Scholar 

  21. Pandey, L.K., et al.: River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure and non-taxonomical diatom metrics. Ecol. Indic. 84, 140–151 (2018)

    Article  CAS  Google Scholar 

  22. Cerisier, A., Vedrenne, J., Lavoie, I., Morin, S.: Assessing the severity of diatom deformities using geometric morphometry. Bot. Lett. 166(1), 32–40 (2019)

    Article  CAS  Google Scholar 

  23. Olenici, A., Blanco, S., Borrego-Ramos, M., Momeu, L., Baciu, C.: Exploring the effects of acid mine drainage on diatom teratology using geometric morphometry. Ecotoxicology. 26(8), 1018–1030 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. Lavoie, I., et al.: Diatom teratologies as biomarkers of contamination: are all deformities ecologically meaningful? Ecol. Indic. 82, 539–550 (2017)

    Article  CAS  Google Scholar 

  25. Fernández, M., et al.: Design and testing of a new diatom-based index for heavy metal pollution. Arch. Environ. Contam. Toxicol. 74(1), 170–192 (2018)

    Article  PubMed  CAS  Google Scholar 

  26. Morin, S., et al.: Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environ. Pollut. 151(3), 532–542 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Blanco, S., Bécares, E.: Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere. 79(1), 18–25 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. Blanco, S., Bécares, E., Cauchle, H.-M., Hoffmann, L., Ector, L.: Comparison of biotic indices tor water quality diagnosis in the Duero Basin (Spain). Arch. Hydrobiol. Suppl. Large Rivers. 161, 3–4 (2007)

    Google Scholar 

  29. CEN: Water Quality–Guidance Standard for the Identification, Enumeration and Interpretation of Benthic Diatom Samples from Running Waters. EN 14407: 2004, Comité Européen de Normalisation, Geneva (2004)

    Google Scholar 

  30. Lecointe, C., Coste, M., Prygiel, J.: ‘Omnidia’: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia. 269(1), 509–513 (1993)

    Article  Google Scholar 

  31. Cattaneo, A., Couillard, Y., Wunsam, S., Courcelles, M.: Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J. Paleolimnol. 32(2), 163–175 (2004)

    Article  Google Scholar 

  32. ter Braak, C.J., van Dam, H.: Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia. 178(3), 209–223 (1989)

    Article  Google Scholar 

  33. Coste, M., Boutry, S., Tison-Rosebery, J., Delmas, F.: Improvements of the biological diatom index (BDI): description and efficiency of the new version (BDI-2006). Ecol. Indic. 9(4), 621–650 (2009)

    Article  CAS  Google Scholar 

  34. Beszteri, B., Ács, É., Medlin, L.: Conventional and geometric morphometric studies of valve ultrastructural variation in two closely related Cyclotella species (Bacillariophyta). Eur. J. Phycol. 40(1), 89–103 (2005)

    Article  Google Scholar 

  35. Julius, M., Estabrook, G., Edlund, M., Stoermer, E.: Recognition of taxonomically significant clusters near the species level, using computationally intense methods, with examples from the Stephanodiscus niagarae complex (Bacillariophyceae). J. Phycol. 33, 1049–1054 (1997)

    Article  Google Scholar 

  36. Beszteri, B.: Morphometric and Molecular Investigations of Species Limits in Cyclotella meneghiniana (Bacillariophyceae) and Closely Related Species. Doctoral Dissertation, Verlag nicht ermittelbar (2005)

    Google Scholar 

  37. Cox, E.J.: Diatom systematics―a review of past and present practice and a personal vision for future development. Beih. Nova Hedwig. 106, 1–20 (1993)

    Google Scholar 

  38. Blanco, S., Cejudo-Figueiras, C., Álvarez-Blanco, I., Bécares, E., Hoffmann, L., Ector, L.: Atlas de las Diatomeas de la Cuenca del Duero-Diatom Atlas of the Duero Basin. Área de Publicaciones, Universidad de León, León (2011)

    Google Scholar 

  39. Macdonald, J.D.: On the structure of the Diatomaceous frustule and its genetic cycle. J. Nat. Hist. 3(13), 1–8 (1869)

    Google Scholar 

  40. Pfitzer, E.H.H.: Untersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomaceen). Marcus, Bonn (1871)

    Google Scholar 

  41. Hendey, N.I.: Littoral diatoms op Chichester harbour with special reference to fouling. J. R. Microsc. Soc. 71(1), 1–86 (1951)

    Article  CAS  PubMed  Google Scholar 

  42. Lund, J.: Observations on soil algae. 1. The ecology, size and taxonomy of British soil diatoms. New Phytol. 45(1), 56–110 (1946)

    Article  Google Scholar 

  43. Kingston, J., Pappas, J.L.: Quantitative shape analysis as a diagnostic and prescriptive tool in determining Fragilariforma (Bacillariophyta) taxon status. Nova Hedwig. Beih. 135, 103–119 (2009)

    Google Scholar 

  44. Mou, D., Stoermer, E.F.: Separating Tabellaria (Bacillariophyceae) shape groups based on Fourier descriptors 1. J. Phycol. 28(3), 386–395 (1992)

    Article  Google Scholar 

  45. Round, F.E., Crawford, R.M., Mann, D.G.: Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  46. Shukla, S.K., Romero, O.E.: Glacial valve size variation of the Southern Ocean diatom Fragilariopsis kerguelensis preserved in the Benguela Upwelling System, Southeastern Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 499, 112–122 (2018)

    Article  Google Scholar 

  47. Bishop, I.W., Spaulding, S.A.: Life cycle size dynamics in Didymosphenia geminata (Bacillariophyceae). J. Phycol. 53(3), 652–663 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. Meyer, B., Wulf, M., Håkansson, H.: Phenotypic variation of life-cycle stages in clones of three similar Cyclotella species after induced auxospore production. Diatom Res. 16(2), 343–361 (2001)

    Article  Google Scholar 

  49. Pfister, C.A., Stevens, F.R.: The genesis of size variability in plants and animals. Ecology. 83(1), 59–72 (2002)

    Article  Google Scholar 

  50. Soudek Jr., D., Robinson, G.: Electrophoretic analysis of the species and population structure of the diatom Asterionella formosa. Can. J. Bot. 61(2), 418–433 (1983)

    Article  Google Scholar 

  51. Cortese, G., Gersonde, R.: Morphometric variability in the diatom Fragilariopsis kerguelensis: implications for Southern Ocean paleoceanography. Earth Planet. Sci. Lett. 257(3–4), 526–544 (2007)

    Article  CAS  Google Scholar 

  52. Kerrigan, E.A., Irwin, A.J., Finkel, Z.V.: Community-and population-level changes in diatom size structure in a subarctic lake over the last two centuries. PeerJ. 3, e1074 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Marchetti, A., Cassar, N.: Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications. Geobiology. 7(4), 419–431 (2009)

    Article  CAS  PubMed  Google Scholar 

  54. Trobajo Pujadas, R.: Ecological Analysis of Periphytic Diatoms in Mediterranean Coastal Wetlands (Empordà Wetlands, NE Spain). ARG Gantner Verlag, Ruggell (2010)

    Google Scholar 

  55. Gari, E., Corigliano, M.: Spatial and temporal variations of Cocconeis placentula var. euglypta (Ehrenb.) 1854 Grunow, 1884 in drift and periphyton. Braz. J. Biol. 67(4), 587–595 (2007)

    Article  CAS  PubMed  Google Scholar 

  56. Cox, E.J.: Morphogenetic information and the selection of taxonomic characters for raphid diatom systematics. Plant Ecol. Evol. 143(3), 271–277 (2010)

    Article  Google Scholar 

  57. Pappas, J.L., Stoermer, E.F.: Multidimensional analysis of diatom morphologic and morphometric phenotypic variation and relation to niche. Ecoscience. 2(4), 357–367 (1995)

    Article  Google Scholar 

  58. Finkel, Z.V., Beardall, J., Flynn, K.J., Quigg, A., Rees, T.A.V., Raven, J.A.: Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32(1), 119–137 (2009)

    Article  CAS  Google Scholar 

  59. Pappas, J.L., Stoermer, E.F.: Morphometric comparison of the neotype of Asterionella formosa Hassall (Heterokontophyta, Bacillariophyceae) with Asterionella edlundii s p. nov. from Lake Hovsgol, Mongolia. Diatom. 19, 55–65 (2003)

    Google Scholar 

  60. Passy, S.I.: Differential cell size optimization strategies produce distinct diatom richness–body size relationships in stream benthos and plankton. J. Ecol. 95(4), 745–754 (2007)

    Article  Google Scholar 

  61. Kociolek, J.P., Williams, D.M.: Unicell ontogeny and phylogeny: examples from the diatoms. Cladistics. 3(3), 274–284 (1987)

    Article  PubMed  Google Scholar 

  62. Schmid, A.-M.M.: Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. In: The Protistan Cell Surface, pp. 43–60. Springer, Berlin (1994)

    Chapter  Google Scholar 

  63. Potapova, M., Hamilton, P.B.: Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex 1. J. Phycol. 43(3), 561–575 (2007)

    Article  Google Scholar 

  64. Kling, H.J.: Ecology, Ontogeny and Morphometry of the Freshwater Centric Diatom Species Complex Cyclotella bodanica/radiosa. Master thesis, University of Manitoba, Winnipeg (1997)

    Google Scholar 

  65. Trobajo, R., Rovira, L., Ector, L., Wetzel, C.E., Kelly, M., Mann, D.G.: Morphology and identity of some ecologically important small Nitzschia species. Diatom Res. 28(1), 37–59 (2013)

    Article  Google Scholar 

  66. Theriot, E.: An empirically based model of variation in rotational elements in centric diatoms with comments on ratios in phycology 1. J. Phycol. 24(3), 400–407 (1988)

    Google Scholar 

  67. Savriama, Y., Neustupa, J., Klingenberg, C.P.: Geometric morphometrics of symmetry and allometry in Micrasterias rotata (Zygnemophyceae, Viridiplantae). Nova Hedwig. Suppl. 136, 43–54 (2010)

    Article  Google Scholar 

  68. Quinones, R.A., Platt, T., Rodríguez, J.: Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Prog. Oceanogr. 57(3–4), 405–427 (2003)

    Article  Google Scholar 

  69. Marchetti, A., Maldonado, M.T., Lane, E.S., Harrison, P.J.: Iron requirements of the pennate diatom Pseudo-nitzschia: comparison of oceanic (high-nitrate, low-chlorophyll waters) and coastal species. Limnol. Oceanogr. 51(5), 2092–2101 (2006)

    Article  CAS  Google Scholar 

  70. Paull, T.M., Hamilton, P.B., Gajewski, K., LeBlanc, M.: Numerical analysis of small Arctic diatoms (Bacillariophyceae) representing the Staurosira and Staurosirella species complexes. Phycologia. 47(2), 213–224 (2008)

    Article  Google Scholar 

  71. Genkal, S.: Morphological variability and taxonomy of Diatoma tenue Ag. (Bacillariophyta). Int. J. Algae. 6(4), 319–330 (2004)

    Article  Google Scholar 

  72. Blanco, S., Borrego-Ramos, M., Olenici, A.: Disentangling diatom species complexes: does morphometry suffice? PeerJ. 5, e4159 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  73. Smol, J.P., Stoermer, E.F.: The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  74. Jardine, N., Sibson, R.: Quantitative attributes in taxonomic descriptions. Taxon. 19, 862–870 (1970)

    Article  Google Scholar 

  75. Turland, N., et al.: International code of nomenclature for algae, fungi and plants. Regnum Veg. 159, 1–254 (2018)

    Google Scholar 

  76. Krammer, K.: Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 3. Cymbella. ARG Gantner Verlag KG, Ruggell (2002)

    Google Scholar 

  77. Tusset, E.A., Tremarin, P.I., Straube, A., Ludwig, T.A.: Morphology of Adlafia taxa (Bacillariophyta, Cymbellaceae), with proposition of two new species from Brazil. Phytotaxa. 306(4), 259–274 (2017)

    Article  Google Scholar 

  78. Lange-Bertalot, H.: As a practical diatomist, how does one deal with the flood of new names? Diatom. 13, 9–12 (1997)

    Google Scholar 

  79. Anderson, E., Turrill, W.B.: Biometrical studies on herbarium material. Nature. 136(3451), 986 (1935)

    Article  Google Scholar 

  80. Kitton, F.: Remarks on the publication of new genera and species from insufficient material. J. Cell Sci. 2(26), 118–121 (1897)

    Google Scholar 

  81. Barnes, R.J.: Bounding the required sample size for geologic site characterization. Math. Geol. 20(5), 477–490 (1988)

    Article  Google Scholar 

  82. Mood, A.M.: Introduction to the Theory of Statistics. McGraw-Hill, New York (1974)

    Google Scholar 

  83. Wilks, S.S.: Determination of sample sizes for setting tolerance limits. Ann. Math. Stat. 12(1), 91–96 (1941)

    Article  Google Scholar 

  84. Hahn, G.J., Meeker, W.Q.: Statistical Intervals: A Guide for Practitioners. Wiley, New York (1991)

    Book  Google Scholar 

  85. Somerville, P.N.: Tables for obtaining non-parametric tolerance limits. Ann. Math. Stat. 29(2), 599–601 (1958)

    Article  Google Scholar 

  86. Walsh, J.E.: Distribution-free tolerance intervals for continuous symmetrical populations. Ann. Math. Stat. 33, 1167–1174 (1962)

    Article  Google Scholar 

  87. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bishop, I.W., Spaulding, S.A.: Data from: “Life Cycle Size Dynamics in Didymosphenia geminata (Bacillariophytceae)”, Dryad Digital Repository. bit.ly/2K5f6DU

  89. Abt, K.: Scale-independent non-parametric multivariate tolerance regions and their application in medicine. Biom. J. 24(1), 27–48 (1982)

    Article  Google Scholar 

  90. Lang, T.A., Altman, D.G.: Basic statistical reporting for articles published in biomedical journals: the ‘Statistical Analyses and Methods in the Published Literature’ or the SAMPL guidelines. Eur. Assoc. Sci. Ed. 256, 256 (2013)

    Google Scholar 

  91. Hozo, S.P., Djulbegovic, B., Hozo, I.: Estimating the mean and variance from the median, range and the size of a sample. BMC Med. Res. Methodol. 13, 1–10 (2005)

    Google Scholar 

  92. Luo, D., Wan, X., Liu, J., Tong, T.: Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 27(6), 1785–1805 (2018)

    Article  PubMed  Google Scholar 

  93. Dietz, T., Kalof, L.: Introduction to Social Statistics: The Logic of Statistical Reasoning. John Wiley & Sons, New York (2009)

    Google Scholar 

Download references

Acknowledgments

The present contribution was financially supported by a grant of the Romanian National Authority for Scientific Research, CCCDI—UEFISCDI, project 3-005 Tools for sustainable gold mining in EU (SUSMIN). A. González kindly helped us in Sect. 4.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Olenici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olenici, A., Baciu, C., Blanco, S., Morin, S. (2020). Naturally and Environmentally Driven Variations in Diatom Morphology: Implications for Diatom-Based Assessment of Water Quality. In: Cristóbal, G., Blanco, S., Bueno, G. (eds) Modern Trends in Diatom Identification. Developments in Applied Phycology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-39212-3_4

Download citation

Publish with us

Policies and ethics