Skip to main content

Modeling the Explosive Phenomena Driven by Rapid Phase Transition

  • Chapter
  • First Online:
Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy
  • 514 Accesses

Abstract

The paper discusses the physical background of explosive phenomena caused by internal energy release in substances undergoing liquid-to-vapor phase transition. Two types of “physical” explosions are discussed: the boiling liquid expanding vapor explosion arising upon catastrophic failure of high-pressure vessels and known as one of major hazards in process industries, and the steam explosion, arising upon interaction of high-temperature melt with water or some other coolant having low enough boiling point. In both cases, the dynamics of two-phase mixture containing liquid and vapor phases of the substance is described by Euler equations with complex equation of state which is different from the equations of state for the individual phases. Numerical aspects arising in the solution of the governing equations are discussed, and results of typical numerical simulations demonstrating the development and propagation of pressure waves from the respective types of explosions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, T., Abbasi, S.A.: J. Hazard. Mater. 141, 489 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.056

  2. Yakush, S.E.: Int. J. Heat Mass Transf. 103, 173 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.048

  3. van den Berg, A.C., van der Voort, M.M., Weerheijm, J., Versloot, N.H.A.: J. Loss Prev. Process Ind. 17(6), 397 (2004). https://doi.org/10.1016/j.jlp.2004.07.002

  4. Yakush, S.: In: Proceedings of the Ninth International Seminar on Fire and Explosion Hazards (ISFEH9), pp. 430–439. St. Petersburg Polytechnic University Press, St. Petersburg (2019). https://doi.org/10.18720/spbpu/2/k19-103

  5. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: J. Comput. Phys. 152(2), 457 (1999). https://doi.org/10.1006/jcph.1999.6236

  6. Kurganov, A., Tadmor, E.: J. Comput. Phys. 160(1), 241 (2000). https://doi.org/10.1006/jcph.2000.6459

  7. Laboureur, D., Birk, A.M., Buchlin, J.M., Rambaud, P., Aprin, L., Heymes, F., Osmont, A.: Process Saf. Environ. Prot. 95, 159 (2015). https://doi.org/10.1016/j.psep.2015.03.004

  8. Fletcher, D., Theofanous, T.: Adv. Heat Transf. 29, 129–213 (1997). https://doi.org/10.1016/S0065-2717(08)70185-0

  9. Magallon, D., Huhtiniemi, I., Hohmann, H.: Nucl. Eng. Des. 189(1), 223 (1999). https://doi.org/10.1016/S0029-5493(98)00274-X

  10. Meignen, R., Picchi, S., Lamome, J., Raverdy, B., Escobar, S.C., Nicaise, G.: Nucl. Eng. Des. 280, 511 (2014). https://doi.org/10.1016/j.nucengdes.2014.08.029

  11. Meignen, R., Raverdy, B., Picchi, S., Lamome, J.: Nucl. Eng. Des. 280, 528 (2014). https://doi.org/10.1016/j.nucengdes.2014.08.028

  12. Kudinov, P., Grishchenko, D., Konovalenko, A., Karbojian, A.: Nucl. Eng. Des. 314, 182 (2017). https://doi.org/10.1016/j.nucengdes.2017.01.029

  13. Leskovar, M., Centrih, V., Uršič, M.: Nucl. Eng. Des. 296, 19 (2016). https://doi.org/10.1016/j.nucengdes.2015.10.026

  14. Rashkovskiy, S.A., Yakush, S.E., Sysoeva, E.Y.: J. Phys.: Conf. Ser. 1268, 012081 (2019). https://doi.org/10.1088/1742-6596/1268/1/012081

  15. Kim, H., Kim, H., Kim, C.: AIAA J. 56(7), 2623 (2018). https://doi.org/10.2514/1.J056497

Download references

Acknowledgements

This work was funded by Russian Science Foundation Grant 18-19-00289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Yakush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yakush, S.E. (2020). Modeling the Explosive Phenomena Driven by Rapid Phase Transition. In: Demidenko, G., Romenski, E., Toro, E., Dumbser, M. (eds) Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy. Springer, Cham. https://doi.org/10.1007/978-3-030-38870-6_51

Download citation

Publish with us

Policies and ethics