Skip to main content

Dietary Fiber and Gut Microbiota

  • Chapter
  • First Online:
Science and Technology of Fibers in Food Systems

Abstract

The gastrointestinal tract hosts the most complex and abundant ecosystem of the human body, being the colon where the highest concentration of microorganisms is found. The intestinal microbiota performs metabolic, trophic and protective functions that are of great importance to the host. Numerous studies have used dietary approaches to modulate the composition and metabolic function of the gut microbial communities to improve health, and to prevent or treat disease, resulting in the development of the functional food concept. Dietary strategies for modulating the microbiota include the consumption of live probiotic microbial strains, soluble and insoluble dietary fibers, selectively fermented ingredients such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics). This chapter reviews the most significant and updated knowledge regarding the role of dietary fiber (DF) on gut microbiota and the impact of certain functional food components on the modulation of gut health, focusing on probiotics, prebiotics and polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Ali GS, Mehta RS, Lloyd-Price J, Mallick H, Branck T, Ivey KL, Drew DA, DuLong C, Rimm E, Izard J, Chan AT (2018) Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat Microbiol 3(3):356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2013) Prebiotics as functional foods: a review. J Funct Foods 5(4):1542–1553

    Article  CAS  Google Scholar 

  • Arranz S, Silvan JM, Saura-Calixto F (2010) Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Mol Nutr Food Res 54(11):1646–1658

    Article  CAS  PubMed  Google Scholar 

  • Avila M, Hidalgo M, Sanchez-Moreno C, Pelaez C, Requena T, de Pascual-Teresa S (2009) Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res Int 42:1453–1461

    Article  CAS  Google Scholar 

  • Bang SJ, Kim G, Lim MY, Song EJ, Jung DH, Kum JS, Nam YD, Park CS, Seo DH (2018) The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express 8:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sanchez E, Nabavi SF, Nabavi SM (2017) Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res 196:44–68

    Article  CAS  PubMed  Google Scholar 

  • Barratt MJ, Lebrilla C, Shapiro HY, Gordon JI (2017) The gut microbiota, food science, and human nutrition: a timely marriage. Cell Host Microbe 22(2):134–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso E, Van de Wiele T, Jiménez-Girón A, Muñoz-González A, Martín-Alvarez I, Moreno-Arribas PJ, Bartolomé MV, Peláez B, Martínez-Cuesta MC, Requena T (2014) Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Appl Microbiol Biotechnol 98(15):6805–6815

    Article  CAS  PubMed  Google Scholar 

  • Barroso E, Cueva C, Peláez C, Martínez-Cuesta MC, Requena T (2015) Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT Food Sci Technol 61(2):283–289

    Article  CAS  Google Scholar 

  • Braune A, Blaut M (2016) Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7:216–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucci V, Xavier JB (2014) Towards predictive models of the human gut microbiome. J Mol Biol 426(23):3907–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caleffi ER, Krausová G, Hyršlová I, Paredes LLR, dos Santos MM, Sassaki GL, Gonçalves RAC, de Oliveira AJB (2015) Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots. Int J Biol Macromol 80:392–399

    Article  CAS  PubMed  Google Scholar 

  • Carlson JL, Erickson JM, Lloyd BB, Slavin JL (2018) Health effects and sources of prebiotic dietary fiber. Curr Dev Nutr 2(3):nzy005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciudad-Mulero M (2017) Arabinoxylans and their health effects. Revista Complutense de Ciencias Veterinarias 11:84–89

    Article  Google Scholar 

  • Davis LM, Martínez I, Walter J, Goin C, Hutkins RW (2011) Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One 6:e25200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Angelis M, Montemurno E, Vannini L, Cosola C, Cavallo N, Gozzi G, Maranzano V, Di Cagno R, Gobbetti M, Gesualdo L (2015) Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol 81:7945–7956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66

    PubMed  Google Scholar 

  • Deehan EC, Duar RM, Armet AM, Perez-Muñoz ME, Jin M, Walter J (2017) Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microbiol Spectr 5(5)

    Google Scholar 

  • Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14(1):20–32

    Article  CAS  PubMed  Google Scholar 

  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Ellermann M, Carr JS, Fodor AA, Arthur JC, Carroll IM (2017) Characterizing and functionally defining the gut microbiota: methodology and implications. In: Floch MH, Ringel Y, Walke WA (eds) The microbiota in gastrointestinal pathophysiology. Elservier Science, London, pp 15–25

    Chapter  Google Scholar 

  • Espin JC, Gonzalez-Sarrias A, Tomas-Barberan FA (2017) The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol 139:82–93

    Article  CAS  PubMed  Google Scholar 

  • Eswaran S, Muir J, Chey WD (2013) Fiber and functional gastrointestinal disorders. Am J Gastroenterol 108(5):718–727

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2002) Working group report on drafting guidelines for the evaluation of probiotics in food, London, Ontario

    Google Scholar 

  • Ferreira-Lazarte A, Kachrimanidoub V, Villamiel M, Rastall RA, Moreno FJ (2018) In vitro fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources. Carbohydr Polym 199:482–491

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Fraher MH, O'toole PW, Quigley EM (2012) Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol 9(6):312–322

    Article  CAS  PubMed  Google Scholar 

  • García-Cayuela T, Díez-Municio M, Herrero M, Martínez-Cuesta MC, Peláez C, Requena T, Moreno FJ (2014) Selective fermentation of potential prebiotic lactose-derived oligosaccharides by probiotic bacteria. Int Dairy J 38:11–15

    Article  CAS  Google Scholar 

  • García-Cayuela T, Nuño-Escobar B, Welti-Chanes J, Cano MP (2018) In vitro bioaccessibility of individual carotenoids from persimmon (Diospyros kaki, cv. Rojo Brillante) used as an ingredient in a model dairy food. J Sci Food Agric 98:3246–3254

    Article  PubMed  CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Wijnkoop I, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7(1):1–19

    Article  Google Scholar 

  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502

    Article  PubMed  Google Scholar 

  • Gil-Sánchez I, Ayuda-Durán B, González-Manzano S, Santos-Buelga C, Cueva C, Martín-Cabrejas MA, Sanz-Buenhombre M, Guadarrama A, Moreno-Arribas MV, Bartolomé B (2017) Chemical characterization and in vitro colonic fermentation of grape pomace extracts. J Sci Food Agric 97(10):3433–3444

    Article  PubMed  CAS  Google Scholar 

  • Gradilla-Hernández S, Herrera-López EJ, Gschaedler A, González-Ávila M, Fuentes-Aguilar R, García-González A (2018) Differential neural network identifier for parameter determination of a mixed microbial culture model. IFAC-PapersOnLine 51(13):479–484

    Article  Google Scholar 

  • Guarner F, Sanders ME, Eliakim R, Fedorak R, Gangl A, Garisch J, Kaufmann P, Karakan T, Khan AG, Kim N, de Paula JA, Ramakrishna B, Shanahan F, Szajewska H, Thomson A, Le Mair A (2017) Probiotics and prebiotics. World Gastroenterology Organisation Global Guidelines, 1–35

    Google Scholar 

  • Hamaker BR, Tuncil YE (2014) A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 426(23):3838–3850

    Article  CAS  PubMed  Google Scholar 

  • Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8(2):172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holscher HD, Caporaso JG, Hooda S, Brulc JM, Fahey GCJ, Swanson KS, Fahey GC Jr, Swanson KS (2015) Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr 101:55–64

    Article  CAS  PubMed  Google Scholar 

  • Hughes SA, Shewry PR, Gibson GR, McCleary BV, Rastall RA (2008) In vitro fermentation of oat and barley derived β-glucans by human faecal microbiota. FEMS Microbiol Ecol 64(3):482–493

    Article  CAS  PubMed  Google Scholar 

  • Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ, Hamaker B, Martens EC, Mills DA, Rastal RA, Vaughan E (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol 37:1–7

    Article  CAS  PubMed  Google Scholar 

  • Illumina (2016) Nextera ® DNA library preparation kits. https://www.illumina.com/documents/products/datasheets/datasheet_nextera_dna_sample_prep.pdf

  • Jayachandran M, Chen J, Chung SSM, Baojun X (2018) A critical review on the impacts of β-glucans on gut microbiota and human health. J Nutr Biochem 61:101–110

    Article  CAS  PubMed  Google Scholar 

  • Koh A, De Vadder F, Kovatcheva-Datchary P, Beackhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345

    Article  CAS  PubMed  Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88

    Article  Google Scholar 

  • Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O (2016) Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 8(1):52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krumbeck JA, Walter J, Hutkins RW (2018) Synbiotics for improved human health: recent developments, challenges, and opportunities. Annu Rev Food Sci Technol 9:451–479

    Article  PubMed  Google Scholar 

  • Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61(3):219–225

    Article  CAS  PubMed  Google Scholar 

  • Lee PY, Chin SF, Neoh HM, Jamal R (2017) Metaproteomic analysis of human gut microbiota: where are we heading? J Biomed Sci 24(1):36–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockyer S, Nugent AP (2017) Health effects of resistant starch. British Nutrition Foundation (Nutrition Bulletin) 42:10–41

    Article  Google Scholar 

  • Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJM, Garcia-Gil LJ, Flint HJ (2012) Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 78:420–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovegrove A, Edwards CH, De Noni I, Patel H, EI SN, Grassby T, Zielke C, Ulmius M, Nilsson L, Butterworth PJ, Ellis PR, Shewry PR (2017) Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr 57(2):237–253

    Article  CAS  PubMed  Google Scholar 

  • Makki K, Deehan EC, Walter J, Bäckhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23(6):705–715

    Article  CAS  PubMed  Google Scholar 

  • Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021

    Article  PubMed Central  CAS  Google Scholar 

  • Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innovative Food Sci Emerg Technol 27:15–25

    Article  CAS  Google Scholar 

  • Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J (2010) Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 5:e15046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martirosyan DM, Singh J (2015) A new definition of functional food by FFC: what makes a new definition unique? Funct Foods in Health Dis 5(6):209–223

    Article  Google Scholar 

  • McRorie JW Jr, McKeown NM (2017) Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J Acad Nutr Diet 117:251–264

    Article  PubMed  Google Scholar 

  • Meenu M, Xu B (2018) A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Crit Rev Food Sci Nutr 30:1–13

    Google Scholar 

  • Meisel JS, Grice EA (2016) The human microbiome. In: Ginsburg G, Willard H (eds) Genomic and precision medicine. Academic Press, London, pp 63–77

    Google Scholar 

  • Méndez-García C, Bargiela R, Martínez-Martínez M, Ferrer M (2018) In: Metagenomics MN (ed) Metagenomic protocols and strategies. Academic Press, London, pp 15–54

    Chapter  Google Scholar 

  • Mendis M, Simsek S (2014) Arabinoxylans and human health. Food Hydrocoll 42:239–243

    Article  CAS  Google Scholar 

  • Mendis M, Leclerc E, Simsek S (2016) Arabinoxylans, gut microbiota and immunity. Carbohydr Polym 139:159–166

    Article  CAS  PubMed  Google Scholar 

  • Morales-Ortega A, Niño-Medina G, Carvajal-Millán E, Gardea-Béjar A, Torres-Chávez P, López-Franco Y, Rascón-Chu A, Lizardi-Mendoza J (2013) Los arabinoxilanos ferulados de cereales: Una revisión de sus características fisicoquímicas y capacidad gelificante. Rev Fitotec Mex 36(4):439–446

    CAS  Google Scholar 

  • Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol 46:S1–S2

    Article  PubMed  Google Scholar 

  • Muñoz-González I, Jiménez-Girón A, Martín-Álvarez PJ, Bartolomé B, Moreno- Arribas MV (2013) Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. J Agric Food Chem 61(39):9470–9479

    Article  PubMed  CAS  Google Scholar 

  • Murphy L, Wan Y, Ling KH, El-Nezami H, Wang MF (2018) Influence of functional food components on gut health. Crit Rev Food Sci Nutr 30:1–10

    Google Scholar 

  • Naqash F, Masoodi FA, Rather SA, Wani SM, Gani A (2017) Emerging concepts in the nutraceutical and functional properties of pectin- a review. Carbohydr Polym 168:227–239

    Article  CAS  PubMed  Google Scholar 

  • Neish AS, Jones RM (2014) Redox signaling mediates symbiosis between the gut microbiota and the intestine. Gut Microbes 5:250–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 52(12):7577–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimondi S, Anighoro A, Quartieri A, Amaretti A, Tomás-Barberán FA, Rastelli G, Rossi M (2015) Role of bifidobacteria in the hydrolysis of chlorogenic acid. Microbiol Open 4:41–52

    Article  CAS  Google Scholar 

  • Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL (2016) Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469(4):967–977

    Article  CAS  PubMed  Google Scholar 

  • Rastall RA, Hotchkiss AT (2003) Potential for the development of prebiotic oligosaccharides from biomass. In: Eggleston G, Côté GL (eds) Oligosaccharides in food and agriculture. ACS Symposium Series, American Chemical Society, Washington, DC, pp 44–53

    Chapter  Google Scholar 

  • Remely M, Tesar I, Hippe B, Gnauer S, Rust P, Haslberger AG (2015) Gut microbiota composition correlates with changes in body fat content due to weight loss. Benefic Microbes 6:431–439

    Article  CAS  Google Scholar 

  • Roberfroid M (1993) Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33(2):103–148

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26(1):26050

    PubMed  Google Scholar 

  • Rumberger JM, Arch JR, Green A (2014) Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. Peer J 2:e611

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saarela M (2018) Future development of probiotic dairy products. In: Tamime AY, Thomas LV (eds) Probiotic dairy products, 2nd edn. Wiley, Chichester, pp 389–393

    Google Scholar 

  • Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch – a review. Compr Rev Food Sci Food Saf 5:1–17

    Article  CAS  PubMed  Google Scholar 

  • Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61(1):1600240

    Article  CAS  Google Scholar 

  • Sanchez-Patan F, Tabasco R, Monagas M, Requena T, Pelaez C, Moreno- Arribas MV, Bartolome B (2012) Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. J Agric Food Chem 60:7142–7151

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Pintos N, Pérez-Jiménez J, Buschmann AH, Vergara-Salinas JR, Pérez-Correa JR, Saura-Calixto F (2017) Macromolecular antioxidants and dietary fiber in edible seaweeds. J Food Sci 82(2):289–295

    Article  CAS  PubMed  Google Scholar 

  • Sargautiene V, Zariņš Z, Ligere R (2015) Effects of the modulation gut microbiota by oat beta glucan on type 2 diabetes mellitus. Int J Res Stud Biosci 3(5):2349–2357

    Google Scholar 

  • Selma MV, Espin JC, Tomas-Barberan FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57(15):6485–6501

    Article  CAS  PubMed  Google Scholar 

  • Shao D, Li J, Li J, Tang R, Liu L, Shi J, Huang Q, Yang H (2015) Inhibition of gallic acid on the growth and biofilm formation of Escherichia coli and Streptococcus mutans. J Food Sci 80(6):1299–1305

    Article  CAS  Google Scholar 

  • Shahidi F, Chandrasekara A (2017) Interactions of phenolics and their association with dietary fibre. John Wiley and Sons Publishers, Hoboken, pp 21–36

    Google Scholar 

  • Simon O, Vahjen W, Scharek L (2005) Micro-organisms as feed additives-probiotics. Adv Pork Prod 16:161–167

    Google Scholar 

  • Tabasco R, Sanchez-Patan F, Monagas M, Bartolome B, Moreno-Arribas MV, Pelaez C, Requena T (2012) Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol 28:1345–1056

    Article  CAS  Google Scholar 

  • Tamargo A, Gil-Sánchez I, Miralles B, Martín D, García-Risco MR, Fornari T, Bartolomé B, Moreno-Arribas MV, Cueva C (2017) Simulador gastrointestinal dinámico (simgi®): una herramienta potencialmente útil en nutrición clínica. Nutr Hosp 34(6):1489–1496

    Google Scholar 

  • Tessler M, Neumann JS, Afshinnekoo E, Pineda M, Hersch R, Velho LFM, Segovia BT, Lansac-Toha FA, Lemke M, DeSalle R, Mason CE (2017) Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Sci Rep 7(1):6589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tewari S, Dubey KK, Singhal RS (2018) Evaluation and application of prebiotic and probiotic ingredients for development of ready to drink tea beverage. J Food Sci Technol 55(4):1525–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thammarutwasik P, Hongpattarakere T, Chantachum S, Kijroongrojana K, Itharat A, Reanmongkol W, Tewtrakul S, Ooraikul B (2009) Prebiotics- a review. Songklanakarin J Sci Technol 31(4):401–408

    Google Scholar 

  • Tomás-Barberán FA, Garcia-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M (2014a) In vitro transformations of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 58:1122–1131

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Barberán FA, García-Villalba R, González-Sarrías A, Selma MV, Espín JC (2014b) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62(28):6535–6538

    Article  PubMed  CAS  Google Scholar 

  • Tuohy KM, Rouzaud GCM, Bruck WM, Gibson GR (2005) Modulation of the human gut microflora towards improved health using prebiotics-assessment of efficacy. Curr Pharm Des 11(1):75–90

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J (2015) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 0:1–6

    Google Scholar 

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5(2):220–230

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Jia H (2016) Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 14(8):508–522

    Article  CAS  PubMed  Google Scholar 

  • Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP, Momeni B, Shou W, Kettle H, Flint HJ, Haas AF, Laroche B, Kreft JU, Rainey PB, Freilich S, Schister S, Milferstedt K, van der Meer JR, Grobkopf T, Huisman J, Free A, Picioreanu C, Quince C, Klapper I, Labarthe S, Smets BF, Wang H, Issac Newton Institute Fellows, Soyer OS (2016) Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J 10(11):2557–2568

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong JMW, Comelli EM, Kendall CWC, Sievenpiper JL, Noronha JC, Jenkins DJA (2017) Dietary fiber, soluble and insoluble, carbohydrates, fructose, and lipids. In: The microbiota in gastrointestinal pathophysiology. Academic Press, London, pp 187–200

    Chapter  Google Scholar 

  • Wu H, Tremaroli V, Bäckhed F (2015) Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol Metab 26(12):758–770

    Article  CAS  PubMed  Google Scholar 

  • Yin DT, Zao XH (2017) Impact of exogenous strains on in vitro fermentation and anti-colon cancer activities of maize resistant starch and xylo-oligosaccharides. Starch 69(11–12):1700064

    Article  CAS  Google Scholar 

  • Younis K, Ahmad S, Jahan K (2015) Health benefits and application of prebiotics in foods. J Food Process Technol 6:433

    Google Scholar 

  • Ze XL, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, Kumar MV, Gewirtz AT (2018) Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23:41–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás García-Cayuela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senés-Guerrero, C., Gradilla-Hernández, M.S., García-Gamboa, R., García-Cayuela, T. (2020). Dietary Fiber and Gut Microbiota. In: Welti-Chanes, J., Serna-Saldívar, S., Campanella, O., Tejada-Ortigoza, V. (eds) Science and Technology of Fibers in Food Systems. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-38654-2_12

Download citation

Publish with us

Policies and ethics