Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 878))

  • 236 Accesses

Abstract

We consider modules over integral domains, and investigate direct sums of finite rank torsion-free modules whose endomorphism rings are completely integrally closed elementary divisor domains. The main result (Theorem 4.4) is a Krull-Schmidt-Azumaya type theorem: if a module A is a direct sum of finite rank torsion-free modules each of which is quasi-isomorphic to a member of a semi-rigid system with the mentioned type of endomorphism ring, then every summand of A admits the same kind of direct decomposition. The uniqueness of such decompositions is established up to quasi-isomorphism (Theorem 4.5).

In memoriam Elbert Walker

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, D., Hunter, R., Richman, F.: Global Azumaya theorems in additive categories. J. Pure Appl. Algebra 16, 223–242 (1980)

    Article  MathSciNet  Google Scholar 

  2. Azumaya, G.: Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem. Nagoya Math. J. 3, 117–124 (1950)

    Article  MathSciNet  Google Scholar 

  3. Botha, J.D., Gräbe, P.J.: On torsion-free abelian groups whose endomorphism rings are principal ideal domains. Comm. Algebra 11, 1343–1354 (1983)

    Article  MathSciNet  Google Scholar 

  4. Brewer, J.W., Naudé, C., Naudé, G.: On Bézout domains, elementary divisor rings, and pole assignability. Comm. Algebra 12, 2987–3003 (1984)

    Google Scholar 

  5. Charles, B.: Sous-groupes fonctoriels et topologies. In: Studies of Abelian Groups. Dunod, Paris, pp. 72–92 (1968)

    Google Scholar 

  6. Corner, A.L.S.: Every countable reduced ring is an endomorphism ring. Proc. London Math. Soc. 13, 687–710 (1963)

    Article  MathSciNet  Google Scholar 

  7. Corner, A.L.S., Göbel, R.: Prescribing endomorphism algebras – a unified treatment. Proc. London Math. Soc. 50(3), 447–479 (1985)

    Google Scholar 

  8. Dugas, M., Göbel, R.: Every cotorsion-free algebra is an endomorphism algebra. Math. Z. 181, 451–470 (1982)

    Article  MathSciNet  Google Scholar 

  9. Facchini, A.: Krull-Schmidt and semilocal endomorphism rings. Lect. Notes Pure Appl. Math. Marcel Dekker, New York, 221, 181–201 (2001)

    Google Scholar 

  10. Fuchs, L.: Abelian Groups. Springer, Cham (2015)

    Book  Google Scholar 

  11. Fuchs, L., Salce, L.: Modules over non-Noetherian domains. Math. Surv. Monogr. 84 (2001). (Amer. Math. Society, Providence)

    Google Scholar 

  12. Goeters, P.: When summands of completely decomposable modules are completely decomposable. Comm. Algebra 35, 1956–1970 (2007)

    Article  MathSciNet  Google Scholar 

  13. Kaplansky, I.: Projective modules. Ann. Math. 68, 372–377 (1958)

    Article  MathSciNet  Google Scholar 

  14. Warfield, R.: The Krull-Schmidt theorem for infinite sums of modules. Proc. Amer. Math. Soc. 22, 460–465 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuchs, L. (2020). Elementary Divisor Domains as Endomorphism Rings. In: Nguyen, H., Kreinovich, V. (eds) Algebraic Techniques and Their Use in Describing and Processing Uncertainty. Studies in Computational Intelligence, vol 878. Springer, Cham. https://doi.org/10.1007/978-3-030-38565-1_3

Download citation

Publish with us

Policies and ethics