Skip to main content

Stacking of SVMs for Classifying Intangible Cultural Heritage Images

  • Conference paper
  • First Online:
Advanced Computational Methods for Knowledge Engineering (ICCSAMA 2019)

Abstract

Our investigation aims at classifying images of the intangible cultural heritage (ICH) in the Mekong Delta, Vietnam. We collect an images dataset of 17 ICH categories and manually annotate them. The comparative study of the ICH image classification is done by the support vector machines (SVM) and many popular vision approaches including the handcrafted features such as the scale-invariant feature transform (SIFT) and the bag-of-words (BoW) model, the histogram of oriented gradients (HOG), the GIST and the automated deep learning of invariant features like VGG19, ResNet50, Inception v3, Xception. The numerical test results on 17 ICH dataset show that SVM models learned from Inception v3 and Xception features give good accuracy of 61.54% and 62.89% respectively. We propose to stack SVM models using different visual features to improve the classification result performed by any single one. Triplets (SVM-Xception, SVM-Inception-v3, SVM-VGG19), (SVM-Xception, SVM-Inception-v3, SVM-SIFT-BoW) achieve 65.32% of the classification correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.euh2020aniage.org.

  2. 2.

    http://aniage.ctu.edu.vn/myproj.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Bosch, A., Zisserman, A., Munoz, X.: Scene classification via pLSA. In: Proceedings of the European Conference on Computer Vision, pp. 517–530 (2006)

    Chapter  Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)

    Article  Google Scholar 

  4. Chollet, F., et al.: Keras. https://keras.io (2015)

  5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016)

    Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-based Learning Methods. Cambridge University Press, New York (2000)

    Book  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) - vol. 1, pp. 886–893. IEEE Computer Society (2005)

    Google Scholar 

  8. Deng, J., Berg, A.C., Li, K., Li, F.: What does classifying more than 10,000 image categories tell us? In: Proceedings of Computer Vision - ECCV 2010 - 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010, Part V, pp. 71–84 (2010)

    Chapter  Google Scholar 

  9. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(4), 1871–1874 (2008)

    MATH  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  11. Itseez: Open source computer vision library (2015). https://github.com/itseez/opencv

  12. Kreßel, U.H.G.: Pairwise classification and support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 255–268. MIT Press, Cambridge (1999)

    Google Scholar 

  13. Li, F., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, pp. 524–531 (2005)

    Google Scholar 

  14. Lin, C.: A practical guide to support vector classification (2003)

    Google Scholar 

  15. Lowe, D.: Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  16. Lowe, D.: Distinctive image features from scale invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  17. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  18. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)

    Article  Google Scholar 

  19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Schroff, F., Criminisi, A., Zisserman, A.: Harvesting image databases from the web. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 754–766 (2011)

    Article  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  22. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: 9th IEEE International Conference on Computer Vision (ICCV 2003), Nice, France, 14–17 October 2003, pp. 1470–1477 (2003)

    Google Scholar 

  23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR abs/1512.00567 (2015)

    Google Scholar 

  24. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    Book  Google Scholar 

  25. Wolpert, D.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This work has received support from the European Project H2020 Marie Sklodowska-Curie Actions (MSCA), Research and Innovation Staff Exchange (RISE): Aniage project (High Dimensional Heterogeneous Data based Animation Techniques for Southeast Asian ICH Digital Content), No: 691215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Nghi Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Do, TN., Pham, TP., Pham, NK., Nguyen, HH., Tabia, K., Benferhat, S. (2020). Stacking of SVMs for Classifying Intangible Cultural Heritage Images. In: Le Thi, H., Le, H., Pham Dinh, T., Nguyen, N. (eds) Advanced Computational Methods for Knowledge Engineering. ICCSAMA 2019. Advances in Intelligent Systems and Computing, vol 1121. Springer, Cham. https://doi.org/10.1007/978-3-030-38364-0_17

Download citation

Publish with us

Policies and ethics