Skip to main content

Discovery Goals and Opportunities: A Defense of BSM-Oriented Exploration over Signalism

  • Chapter
  • First Online:
Discovery Beyond the Standard Model of Elementary Particle Physics

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 722 Accesses

Abstract

Discoveries come through exclusions, confirmations or revolutionary findings with respect to a theory canon populated by the Standard Model (SM) and beyond the SM (BSM) theories. Guaranteed discoveries are accomplished only through pursuit of BSM exclusion/confirmation, and thus require investment in the continual formation and analysis of a vibrant theory canon combined with investment in experiment with demonstrated capacity to make BSM exclusions or confirmations. Risks develop when steering away from BSM-oriented work toward its methodological rival, “signalism,” which seeks to realize SM falsification or revolutionary discoveries outside the context of any BSM rationale. It is argued that such an approach leads to inscrutable exertions that reduce prospects for all discovery. The concepts are applied to the European Strategy Update, which seeks to identify future investments in forefront experiment that bring a balance of guaranteed and prospective value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Sakurai Prize is the highest award given by the American Physical Society for work in theoretical particle physics.

  2. 2.

    By extended domains of applicability it is meant that a theory may purport to have a definite range of validity, such as a minimal supersymmetric theory up to the grand unification scale. Or, it may have augmented purposes compared to the SM, such as providing a dark matter candidate. This is the case of new theory that looks like the SM except it has, for example, one more real scalar S that couples to the Higgs boson and is postulated to be the dark matter of the universe [51].

  3. 3.

    Minimal supersymmetry is not exactly a decoupling theory in the sense that the Higgs mass is computable in terms of superpartner masses and is not a free to be any value in the low-scale SM effective theory. For this reason, the allowed parameter space will never include exactly the origin in the \((\xi _0,\xi _{1/2})\) parameter space, or equivalently at the point at infinity in the \((m_0,m_{1/2})\) parameter space, as illustrated for example by the allowed region of Fig. 1.1 of [23] being restricted to finite values in the \((m_0,m_{1/2})\) plane.

  4. 4.

    Distinguishing true science from mere visionary pronouncements has been a difficult problem for millinia. Nevertheless, as scholars frequently note, “we have come to realize that the best proof that our knowledge is genuine is that it enables us to do something” [61].

  5. 5.

    Indeed, several future colliders, such as ILC [22, 82], HL-LHC and HE-LHC [39] and CLIC [10] are being proposed to discover BSM theories that give altered Higgs boson phenomena in subtle ways [50].

  6. 6.

    See Martin’s discussion [81] on p. 54 of version 1 from 1997 which put the upper limit on MSSM light CP-even Higgs mass at \({\lesssim } 130\, \mathrm{GeV}\) and then on p. 95 of version 4 from 2011 (just prior to Higgs boson discovery), which put the upper limit at \({\lesssim } 135\, \mathrm{GeV}\) from improved supersymmetric Higgs mass calculations.

  7. 7.

    A “target observable of a theory” is an observable that the theory is designed to compute and purports to be correct.

  8. 8.

    For this reason, and others, it is baffling why anybody who cares deeply about theorists focusing on theories that are accessible to experiments should think it destructive to science progress that a researcher is encouraged by the naturalness criteria when theory model building. On the other hand, if theorists had become enamored with the “principle of anti-naturalness,” where every new theory had to be highly finetuned for some reason, and thus typically out of reach of every conceivable experiment, that would be a significant concern to science progress. Thankfully, that never happened.

  9. 9.

    Nevertheless, there is a change, albeit tiny, since very precise measurements would be sensitive to quantum loops of virtual muons in the photon propagator mediating \(e^+e^-\rightarrow e^+e^-\).

  10. 10.

    One is tempted to call this latter approach the “shut up and build” approach to experimental science.

  11. 11.

    Analogs to this “you cannot escape speculative theory” argument can be found everywhere in intellectual pursuits, as far and wide even as literary theory: “Hostility to theory usually means an opposition to other people’s theories and an oblivion of one’s own” [58].

  12. 12.

    The risks of pursuing revolutionary discoveries through new experiments without any theory context allowed, which then does not allow comparisons of value with respect to prior experiments and observations, has been illustrated well recently by Caldwell and Dvali in the specific case of anti-matter gravity experiments [37].

  13. 13.

    As Martin Perl put it, “20 years ago the discovery of an additional hadronic resonance was an important event in our world; now such a discovery gains no recognition beyond a new entry in the particle data tables” [87].

  14. 14.

    For example, continued precision measurements of the top quark mass and the Higgs boson mass to determine if, under some simple assumptions, the universe is metastable [53].

  15. 15.

    And it should be emphasized that the standard for interest in BSM theories is not that they are guaranteed to be found at the next future experiment if they exist, but rather that they purport to solve a problem or some other claim to expectation, and that they have a reasonable, but not necessarily guaranteed, prospect for their effects to be discerned.

References

  1. Aaboud, M., et al. [ATLAS Collaboration]: Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in \(\sqrt{s}=13{\rm TeV}\)\(pp\) collisions with the ATLAS detector. Eur. Phys. J. C 78(8), 625 (2018). https://doi.org/10.1140/epjc/s10052-018-6081-9, arXiv:1805.11381 [hep-ex]

  2. Aaboud, M., et al. [ATLAS Collaboration]: Measurement of the top quark mass in the \(t\bar{t}\rightarrow \) lepton+jets channel from \(\sqrt{s}=8\) TeV ATLAS data and combination with previous results. arXiv:1810.01772 [hep-ex]

  3. Aad, G., et al. [ATLAS Collaboration]: Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  4. Aaij, R., et al. [LHCb Collaboration]: Observation of two resonances in the \({{\Lambda }_{b}}^{0} \pi ^{\pm }\) systems and precise measurement of \({{\Sigma }_{b}}^{\pm }\) and \({{\Sigma }_{b}}^{*\pm }\) properties. Phys. Rev. Lett. 122(1), 012001 (2019). https://doi.org/10.1103/PhysRevLett.122.012001, arXiv:1809.07752 [hep-ex]

  5. Aaij, R., et al. [LHCb collaboration]: Observation of CP violation in charm decays. CERN-EP-2019-042 (13 March 2019). http://cds.cern.ch/record/2668357/files/LHCb-PAPER-2019-006.pdf

  6. Amsler, C., et al. (Particle Data Group): Review of particle properties. Phys. Lett. 667, 1 (2008)

    Google Scholar 

  7. Abachi, S., et al. [D0 Collaboration]: Observation of the top quark. Phys. Rev. Lett. 74, 2632 (1995). https://doi.org/10.1103/PhysRevLett.74.2632 [hep-ex/9503003]

    Article  ADS  Google Scholar 

  8. Abe, F., et al. [CDF Collaboration]: Observation of top quark production in \(\bar{p}p\) collisions. Phys. Rev. Lett. 74, 2626 (1995). https://doi.org/10.1103/PhysRevLett.74.2626 [hep-ex/9503002]

  9. Abe, K., et al. [Belle Collaboration]: Observation of large CP violation in the neutral \(B\) meson system. Phys. Rev. Lett. 87, 091802 (2001). https://doi.org/10.1103/PhysRevLett.87.091802 [hep-ex/0107061]

  10. Abramowicz, H., et al.: Higgs physics at the CLIC electron-positron linear collider. Eur. Phys. J. C 77(7), 475 (2017). https://doi.org/10.1140/epjc/s10052-017-4968-5, arXiv:1608.07538 [hep-ex]

  11. Alemany, R., et al.: Summary report of physics beyond colliders at CERN. arXiv:1902.00260 [hep-ex]

  12. Anderson, C.D.: The positive electron. Phys. Rev. 43, 491 (1933). https://doi.org/10.1103/PhysRev.43.491

    Article  ADS  MathSciNet  Google Scholar 

  13. Arbey, A., Cacciapaglia, G., Cai, H., Deandrea, A., Le Corre, S., Sannino, F.: Fundamental composite electroweak dynamics: status at the LHC. Phys. Rev. D 95(1), 015028 (2017). https://doi.org/10.1103/PhysRevD.95.015028, arXiv:1502.04718 [hep-ph]

  14. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998). https://doi.org/10.1016/S0370-2693(98)00466-3 [hep-ph/9803315]

    Article  ADS  Google Scholar 

  15. Arkani-Hamed, N., Porrati, M., Randall, L.: Holography and phenomenology. JHEP 0108, 017 (2001). https://doi.org/10.1088/1126-6708/2001/08/017 [hep-th/0012148]

    Article  ADS  MathSciNet  Google Scholar 

  16. Arnison, G., et al. [UA1 Collaboration]: Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\sqrt{s} = 540\, {\rm GeV}\). Phys. Lett. B 122, 103 (1983) [Phys. Lett. 122B, 103 (1983)]. https://doi.org/10.1016/0370-2693(83)91177-2

    Article  ADS  Google Scholar 

  17. Atlas Collaboration: Higgs physics results. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults. Accessed 27 Jan 2019

  18. Aubert, J.J., et al. [E598 Collaboration]: Experimental observation of a heavy particle \(J\). Phys. Rev. Lett. 33, 1404 (1974). https://doi.org/10.1103/PhysRevLett.33.1404

    Article  ADS  Google Scholar 

  19. Aubert, B., et al. [BaBar Collaboration]: Observation of CP violation in the \(B^0\) meson system. Phys. Rev. Lett. 87, 091801 (2001). https://doi.org/10.1103/PhysRevLett.87.091801 [hep-ex/0107013]

  20. Augustin, J.E., et al. [SLAC-SP-017 Collaboration]: Discovery of a narrow resonance in \(e^+ e^-\) annihilation. Phys. Rev. Lett. 33, 1406 (1974) [Adv. Exp. Phys. 5, 141 (1976)]. https://doi.org/10.1103/PhysRevLett.33.1406

    Article  ADS  Google Scholar 

  21. Azzi, P., et al. [HL-LHC Collaboration and HE-LHC Working Group]: Standard model physics at the HL-LHC and HE-LHC. arXiv:1902.04070 [hep-ph]

  22. Baer, H., et al.: The international linear collider technical design report—Volume 2: Physics. arXiv:1306.6352 [hep-ph]

  23. Bagnaschi, E., et al.: Supersymmetric models in light of improved Higgs mass calculations. Eur. Phys. J. C 79(2), 149 (2019). https://doi.org/10.1140/epjc/s10052-019-6658-y, arXiv:1810.10905 [hep-ph]

  24. Baldes, I., Servant, G.: High scale electroweak phase transition: baryogenesis and symmetry non-restoration. JHEP 1810, 053 (2018). https://doi.org/10.1007/JHEP10(2018)053, arXiv:1807.08770 [hep-ph]

  25. Banner, M., et al. [UA2 Collaboration]: Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN \(p\bar{p}\) collider. Phys. Lett. B 122, 476 (1983) [Phys. Lett. 122B, 476 (1983)]. https://doi.org/10.1016/0370-2693(83)91605-2

    Article  ADS  Google Scholar 

  26. Barnett, M., Quinn, H.R., Mühry, H.: The Charm of Strange Quarks: Mysteries and Revolutilns of Particle Physics. Springer, New York (2000)

    Book  Google Scholar 

  27. Bettini, A.: Problems and status of neutrino physics. In: EMFCSC International School of Subnuclear Physics. Erice, 14–23 June 2018

    Google Scholar 

  28. Bezrukov, F.L., Shaposhnikov, M.: The standard model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). https://doi.org/10.1016/j.physletb.2007.11.072, arXiv:0710.3755 [hep-th]

    Article  ADS  Google Scholar 

  29. Blondel, A.: The number of neutrinos and the Z line shape. Adv. Ser. Direct. High Energy Phys. 26, 145 (2016). https://doi.org/10.1142/9789814733519_0008

    Article  MATH  Google Scholar 

  30. Bloom, E.D., et al.: High-energy inelastic e p scattering at 6-degrees and 10-degrees. Phys. Rev. Lett. 23, 930 (1969). https://doi.org/10.1103/PhysRevLett.23.930

    Article  ADS  Google Scholar 

  31. Bogolyubov, N.N., et al. (eds.): Euler and Modern Science. Mathematical Association of America (2007)

    Google Scholar 

  32. Breidenbach, M., et al.: Observed behavior of highly inelastic electron-proton scattering. Phys. Rev. Lett. 23, 935 (1969). https://doi.org/10.1103/PhysRevLett.23.935

    Article  ADS  Google Scholar 

  33. For a famous illustration of the focus on failure, see Browne, M.W.: 315 Physicists Report Failure in Search for Supersymmetry. New York Times, 5 January 1993

    Google Scholar 

  34. Buchmuller, W., Wyler, D.: Nucl. Phys. B 268, 621 (1986). https://doi.org/10.1016/0550-3213(86)90262-2

    Article  ADS  Google Scholar 

  35. Brivio, I., Trott, M.: The standard model as an effective field theory. https://doi.org/10.1016/j.physrep.2018.11.002, arXiv:1706.08945 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  36. Caldwell, R.R., Smith, T.L., Walker, D.G.E.: Using a primordial gravitational wave background to illuminate new physics. arXiv:1812.07577 [astro-ph.CO]

  37. Caldwell, A., Dvali, G.: On the gravitational force on anti-matter. arXiv:1903.09096 [hep-ph]

  38. Carena, M., Da Rold, L., Pontón, E.: Minimal composite Higgs models at the LHC. JHEP 1406, 159 (2014). https://doi.org/10.1007/JHEP06(2014)159, arXiv:1402.2987 [hep-ph]

  39. Cepeda, M., et al. [Physics of the HL-LHC Working Group]: Higgs physics at the HL-LHC and HE-LHC. arXiv:1902.00134 [hep-ph]

  40. CERN Press Office. CERN experiments observe particle consistent with long-sought Higgs boson, 4 July 2012. http://cds.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459454. Accessed 4 Feb 2019

  41. Chatrchyan, S., et al. [CMS Collaboration]: Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  42. Chatrchyan, S., et al. [CMS Collaboration]: Evidence for the direct decay of the 125 GeV Higgs boson to fermions. Nat. Phys. 10, 557 (2014). https://doi.org/10.1038/nphys3005, arXiv:1401.6527 [hep-ex]

  43. Cheung, C.: TASI lectures on scattering amplitudes. https://doi.org/10.1142/9789813233348_0008, arXiv:1708.03872 [hep-ph]

  44. Cid Vidal, X., et al.: Beyond the standard model physics at the HL-LHC and HE-LHC. arXiv:1812.07831 [hep-ph]

  45. Close, F.: Antimatter. Oxford University Press (2009)

    Google Scholar 

  46. CMS Collaboration. Higgs physics results. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG. Accessed 27 Jan 2019

  47. Csaki, C., Schmaltz, M., Skiba, W.: Confinement in N=1 SUSY gauge theories and model building tools. Phys. Rev. D 55, 7840 (1997). https://doi.org/10.1103/PhysRevD.55.7840 [hep-th/9612207]

    Article  ADS  MathSciNet  Google Scholar 

  48. Cui, Y., Lewicki, M., Morrissey, D.E., Wells, J.D.: Cosmic archaeology with gravitational waves from cosmic strings. Phys. Rev. D 97(12), 123505 (2018). https://doi.org/10.1103/PhysRevD.97.123505, arXiv:1711.03104 [hep-ph]

  49. Cui, Y., Lewicki, M., Morrissey, D.E., Wells, J.D.: Probing the pre-BBN universe with gravitational waves from cosmic strings. JHEP 1901, 081 (2019). https://doi.org/10.1007/JHEP01(2019)081, arXiv:1808.08968 [hep-ph]

  50. Curtin, D., et al.: Exotic decays of the 125 GeV Higgs boson. Phys. Rev. D 90(7), 075004 (2014). https://doi.org/10.1103/PhysRevD.90.075004, arXiv:1312.4992 [hep-ph]

  51. Davoudiasl, H., Kitano, R., Li, T., Murayama, H.: The new minimal standard model. Phys. Lett. B 609, 117 (2005). https://doi.org/10.1016/j.physletb.2005.01.026 [hep-ph/0405097]

    Article  ADS  Google Scholar 

  52. Dawson, S., Englert, C., Plehn, T.: Higgs physics: it ain’t over till it’s over. arXiv:1808.01324 [hep-ph]

  53. Degrassi, G., Di Vita, S., Elias-Miro, J., Espinosa, J.R., Giudice, G.F., Isidori, G., Strumia, A.: Higgs mass and vacuum stability in the standard model at NNLO. JHEP 1208, 098 (2012). https://doi.org/10.1007/JHEP08(2012)098, arXiv:1205.6497 [hep-ph]

  54. Denegri, D., Sadoulet, B., Spiro, M.: The number of neutrino species. Rev. Mod. Phys. 62, 1 (1990). https://doi.org/10.1103/RevModPhys.62.1

    Article  ADS  Google Scholar 

  55. Diehl, E., Kane, G.L., Kolda, C.F., Wells, J.D.: Theory, phenomenology, and prospects for detection of supersymmetric dark matter. Phys. Rev. D 52, 4223 (1995). https://doi.org/10.1103/PhysRevD.52.4223 [hep-ph/9502399]

    Article  ADS  Google Scholar 

  56. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928). https://doi.org/10.1098/rspa.1928.0023

    Article  ADS  MATH  Google Scholar 

  57. Draper, P., Rzehak, H.: A review of Higgs mass calculations in supersymmetric models. Phys. Rep. 619, 1 (2016). https://doi.org/10.1016/j.physrep.2016.01.001, arXiv:1601.01890 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  58. Eagleton, T.: Literary Theory, 2nd edn. University of Minnesota Press, Minneapolis (1996)

    Google Scholar 

  59. Elvang, H., Huang, Y.T.: Scattering amplitudes. arXiv:1308.1697 [hep-th]

  60. European Strategy Update. The European Particle Physics Strategy Update 2018–2020. http://europeanstrategyupdate.web.cern.ch/. Accessed 17 Jan 2019

  61. Farrington, B.: Science in Antiquity, 2nd edn. Oxford University Press (1969)

    Google Scholar 

  62. Feynman, R.: The Character of Physical Law. MIT Press (1965)

    Google Scholar 

  63. Foucault, M.: What is an author? (Trans. by J.V. Harari). In: Rabinow, P. (ed.) The Foucault Reader. Pantheon, New York (1984)

    Google Scholar 

  64. Fujii, K., et al.: Physics case for the 250 GeV stage of the international linear collider. arXiv:1710.07621 [hep-ex]

  65. Fukuda, Y., et al. [Super-Kamiokande Collaboration]: Measurement of the flux and zenith angle distribution of upward through going muons by Super-Kamiokande. Phys. Rev. Lett. 82, 2644 (1999). https://doi.org/10.1103/PhysRevLett.82.2644 [hep-ex/9812014]

    Article  ADS  Google Scholar 

  66. Garisto, R.: Focus: neutrinos have mass. APS Phys. (1998). https://physics.aps.org/story/v2/st10. Accessed 17 Dec 2018

  67. Gilmer, P.J.: Irène Joliot-Curie, a Nobel laureate in artificial radioactivity. In: Chiu, M.-H., Gilmer, P.J., Treagust, D.F. (eds.) Celebrating the 100th Anniversary of Madame Marie Sklodowska Curie’s Nobel Prize in Chemistry. Sense Publishers, Rotterdam (2011)

    Chapter  Google Scholar 

  68. Giudice, G.F.: Naturally speaking: the naturalness criterion and physics at the LHC. arXiv:0801.2562 [hep-ph]

  69. Giudice, G.F.: On future high-energy colliders. arXiv:1902.07964 [physics.hist-ph]

  70. Grojean, C., Servant, G., Wells, J.D.: First-order electroweak phase transition in the standard model with a low cutoff. Phys. Rev. D 71, 036001 (2005). https://doi.org/10.1103/PhysRevD.71.036001 [hep-ph/0407019]

  71. Harrison, P.F., Perkins, D.H., Scott, W.G.: Tri-bimaximal mixing and the neutrino oscillation data. Phys. Lett. B 530, 167 (2002). https://doi.org/10.1016/S0370-2693(02)01336-9 [hep-ph/0202074]

    Article  ADS  Google Scholar 

  72. Hatakeyama, S., et al. [Kamiokande Collaboration]: Measurement of the flux and zenith angle distribution of upward through going muons in Kamiokande II + III. Phys. Rev. Lett. 81, 2016 (1998). https://doi.org/10.1103/PhysRevLett.81.2016 [hep-ex/9806038]

    Article  ADS  Google Scholar 

  73. Hoddeson, L., Brown, L., Riordan, M., Dresden, M. (eds.): The Rise of the Standard Model. Cambridge University Press (1997)

    Google Scholar 

  74. Jarlskog, C.: Public comment, Lund October 2014

    Google Scholar 

  75. Kennefick, D.: Einstein versus the physical review. Phys. Today 58(9), 43 (2005). https://doi.org/10.1063/1.2117822

    Article  Google Scholar 

  76. Khachatryan, V., et al. [CMS Collaboration]: Measurement of the top quark mass using proton-proton data at \({\sqrt{(s)}}\) = 7 and 8 TeV. Phys. Rev. D 93(7), 072004 (2016). https://doi.org/10.1103/PhysRevD.93.072004, arXiv:1509.04044 [hep-ex]

  77. King, S.F.: Neutrino mass models. Rept. Prog. Phys. 67, 107 (2004). https://doi.org/10.1088/0034-4885/67/2/R01 [hep-ph/0310204]

    Article  ADS  Google Scholar 

  78. Lee, E.R., Halyo, V., Lee, I.T., Perl, M.L.: Automated electric charge measurements of fluid microdrops using the Millikan method. Metrologia 41, S147 (2004). https://doi.org/10.1088/0026-1394/41/5/S05

    Article  ADS  Google Scholar 

  79. Lipkin, H.J.: Theory, phenomenology, and ‘who ordered that?’ Phys. Today 54(1), 68 (2001). https://doi.org/10.1063/1.4796210

    Article  ADS  Google Scholar 

  80. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]. https://doi.org/10.1023/A:1026654312961, https://doi.org/10.4310/ATMP.1998.v2.n2.a1 [hep-th/9711200]

  81. Martin, S.P.: A supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 21, 1 (2010) [Adv. Ser. Direct. High Energy Phys. 18, 1 (1998)]. https://doi.org/10.1142/9789812839657_0001, https://doi.org/10.1142/9789814307505_0001 [hep-ph/9709356]

  82. Moortgat-Pick, G., et al.: Physics at the \(e^+ e^-\) linear collider. Eur. Phys. J. C 75(8), 371 (2015). https://doi.org/10.1140/epjc/s10052-015-3511-9, arXiv:1504.01726 [hep-ph]

  83. Murayama, H., Pierce, A.: Not even decoupling can save minimal supersymmetric SU(5). Phys. Rev. D 65, 055009 (2002). https://doi.org/10.1103/PhysRevD.65.055009 [hep-ph/0108104]

  84. Pais, A.: Inward Bound. Oxford University Press (1986)

    Google Scholar 

  85. Panico, G., Wulzer, A.: The Composite Nambu-Goldstone Higgs. Lecture Notes in Physics. Springer (2016). See also arXiv:1506.01961

  86. Patt, B., Wilczek, F.: Higgs-field portal into hidden sectors. [hep-ph/0605188]

    Google Scholar 

  87. Perl, M.: Popular and unpopular ideas in particle physics. Phys. Today 39, 12 (1986)

    Article  Google Scholar 

  88. Perlmutter, S., et al. [Supernova Cosmology Project Collaboration]: Discovery of a supernova explosion at half the age of the Universe and its cosmological implications. Nature 391, 51 (1998). https://doi.org/10.1038/34124 [astro-ph/9712212]

    Article  ADS  Google Scholar 

  89. Perlmutter, S., et al. [Supernova Cosmology Project Collaboration]: Measurements of omega and lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221 [astro-ph/9812133]

    Article  ADS  Google Scholar 

  90. Poulin, V., Smith, T.L., Grin, D., Karwal, T., Kamionkowski, M.: Cosmological implications of ultralight axionlike fields. Phys. Rev. D 98(8), 083525 (2018). https://doi.org/10.1103/PhysRevD.98.083525, arXiv:1806.10608 [astro-ph.CO]

  91. Ramond, P.: Neutrinos and particle physics models. Presented at History of the Neutrino, Paris, September 2018. arXiv:1902.01741 [physics.hist-ph]

  92. Randall, L., Sundrum, R.: A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). https://doi.org/10.1103/PhysRevLett.83.3370 [hep-ph/9905221]

    Article  ADS  MathSciNet  Google Scholar 

  93. Redmond, K., Trezza, A., Erickcek, A.L.: Growth of dark matter perturbations during kination. Phys. Rev. D 98(6), 063504 (2018). https://doi.org/10.1103/PhysRevD.98.063504, arXiv:1807.01327 [astro-ph.CO]

  94. Riess, A.G., et al. [Supernova Search Team]: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499 [astro-ph/9805201]

    Article  ADS  Google Scholar 

  95. Roseveare, N.T.: Mercury’s Perihelion: From Le Verrier to Einstein. Clarendon Press, Oxford (1982)

    MATH  Google Scholar 

  96. APS Sakurai Prize for Theoretical Particle Physics. https://www.aps.org/units/dpf/awards/sakurai.cfm. Accessed 16 Feb 2019

  97. Schabinger, R.M., Wells, J.D.: A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider. Phys. Rev. D 72, 093007 (2005). https://doi.org/10.1103/PhysRevD.72.093007 [hep-ph/0509209]

  98. Schael, S., et al. [ALEPH and DELPHI and L3 and OPAL and SLD Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group]: Precision electroweak measurements on the \(Z\) resonance. Phys. Rep. 427, 257 (2006). https://doi.org/10.1016/j.physrep.2005.12.006 [hep-ex/0509008]

  99. Seiberg, N.: Electric-magnetic duality in supersymmetric nonAbelian gauge theories. Nucl. Phys. B 435, 129 (1995). https://doi.org/10.1016/0550-3213(94)00023-8 [hep-th/9411149]

    Article  ADS  MathSciNet  Google Scholar 

  100. Senjanovic, G.: Proton decay and grand unification. AIP Conf. Proc. 1200, 131 (2010). https://doi.org/10.1063/1.3327552, arXiv:0912.5375 [hep-ph]

  101. Sirunyan, A.M., et al. [CMS Collaboration]: Measurement of the top quark mass in the all-jets final state at \(\sqrt{s}=\) 13 TeV and combination with the lepton+jets channel. arXiv:1812.10534 [hep-ex]

  102. Tanabashi, M., et al. (Particle Data Group): Review of particle properties. Phys. Rev. D98, 030001 (2018)

    Google Scholar 

  103. Veltman, M.J.G.: The infrared-ultraviolet connection. Acta Phys. Polon. B 12, 437 (1981)

    Google Scholar 

  104. Wells, J.D.: Naturalness, extra-empirical theory assessments, and the implications of skepticism. Found. Phys. (2018). https://doi.org/10.1007/s10701-018-0220-x, arXiv:1806.07289 [physics.hist-ph]

    Article  ADS  MathSciNet  Google Scholar 

  105. Wells, J.D.: Prof. von Jolly’s 1878 prediction of the end of theoretical physics. In: Essays & Commentaries I. Ann Arbor, MI (2016). https://deepblue.lib.umich.edu/handle/2027.42/148318

  106. Wells, J.D.: Beyond the hypothesis: theory’s role in the genesis, opposition, and pursuit of the Higgs boson. Stud. Hist. Philos. Mod. Phys. B 62, 36 (2018). https://doi.org/10.1016/j.shpsb.2017.05.004

    Article  MATH  Google Scholar 

  107. Wells, J.D.: Finetuned cancellations and improbable theories. To be published in Found. Phys. arXiv:1809.03374 [physics.hist-ph]

  108. Williams, P.: Naturalness, the autonomy of scales, and the 125 GeV Higgs. Stud. Hist. Philos. Sci. B 51, 82 (2015). https://doi.org/10.1016/j.shpsb.2015.05.003

    Article  MATH  Google Scholar 

  109. Wolfenstein, L.: Theory, phenomenology, and ‘who ordered that?’ Phys. Today 54(1), 13 (2001). https://doi.org/10.1063/1.1349597

    Article  ADS  Google Scholar 

  110. Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson, R.P.: Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413 (1957). https://doi.org/10.1103/PhysRev.105.1413

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Wells .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wells, J.D. (2020). Discovery Goals and Opportunities: A Defense of BSM-Oriented Exploration over Signalism. In: Discovery Beyond the Standard Model of Elementary Particle Physics. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-38204-9_1

Download citation

Publish with us

Policies and ethics