Skip to main content

Volume Phase Holographic Lenses for Efficient Planar Solar Track-Concentrators

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 629))

Included in the following conference series:

  • 737 Accesses

Abstract

Volume transmission phase holographic lenses were designed and recorded to obtain a simple, lightweight, compact and inexpensive planar solar concentrator. To avoid any mechanical movement, a passive solar tracking system is also proposed by using angular multiplexed holographic lenses. Furthermore, these solar concentrators have no overheating problems resulting from the absorption of infrared frequencies, because in this spectral region the proposed volume holographic lenses do not work. Finally, the realized samples were tested and a good efficiency was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shakher C, Ramamurthy V (1987) Thick transmission phase holograms for photovoltaic concentrator applications. Sol Energy Mater 16:215–221

    Article  Google Scholar 

  2. Bainier C, Hernandez C, Courjon D (1988) Solar concentrating systems using holographic lenses. Sol Wind Technol 5:395–404

    Article  Google Scholar 

  3. Ludman JE, Riccobono J, Semenova IV, Reinhand NO, Tai W, Li X, Syphers G, Rallis E, Sliker G, Martín J (1997) The optimization of a holographic system for solar power generation. Sol Energy 60:1–9

    Article  ADS  Google Scholar 

  4. Zhang YW, Ih CS, Yan HF, Chang MJ (1988) Photovoltaic concentrator using a holographic optical element. Appl Opt 27:3556–3560

    Article  ADS  Google Scholar 

  5. Kogelnik H (1969) Coupled-wave theory of thick hologram gratings. Bell Syst Tech J 48:2909

    Article  ADS  Google Scholar 

  6. Barden SC, Arns JA, Colburn WS (1998) Volume-phase holographic gratings and their potential for astronomical applications. In: Proceedings of SPIE optical astronomical instrumentation, vol 3355, p 866

    Google Scholar 

  7. Blanche PA, Gailly P, Habraken S, Jamar LC (2004) Volume phase holographic gratings: large size and high diffraction efficiency. Opt Eng 43:2603–2612

    Article  ADS  Google Scholar 

  8. Zhang D, Gordon M, Russo JM, Vorndran S, Kostuk RK (2013) Spectrum-splitting photovoltaic system using transmission holographic lenses. J Photonics Energy 3:034597-1–034597-12

    Article  ADS  Google Scholar 

  9. Tedesco JM, Owen H, Pallister DM, Morris MD (1993) Principles and spectroscopic applications of volume holographic optics. Anal Chem 65:441 A–449 A

    Article  Google Scholar 

  10. Chemisana D, Collados MV, Quintanilla M, Atencia J (2013) Holographic lenses for building integrated concentrating photovoltaics. Appl Energy 110:227–235

    Article  Google Scholar 

  11. Ferrara MA, Borbone F, Striano V, Coppola G (2013) Characterization of photopolymers as optical recording materials by means of digital holography microscopy. Proc. SPIE 8792:87920Z

    Article  ADS  Google Scholar 

  12. Bianco G, Ferrara MA, Borbone F, Roviello A, Striano V, Coppola G (2015) Photopolymer-based volume holographic optical elements: design and possible applications. J Eur Opt Soc Rapid 10:15057

    Article  Google Scholar 

  13. Bianco G, Ferrara MA, Borbone F, Roviello A, Pagliarulo V, Grilli S, Ferraro P, Striano V, Coppola G (2015) Multiplexed holographic lenses: realization and optical characterization. In: IET conference publications, Issue CP667. Fotonica AEIT 2015, Turin (Italy)

    Google Scholar 

  14. Baldry IK, Bland-Hawthorn J, Robertson JG (2004) Volume phase holographic gratings: polarization properties and diffraction efficiency. Publ Astron Soc Pac 116:403–414. https://doi.org/10.1086/383622

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ferrara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrara, M.A., Bianco, G., Striano, V., Coppola, G. (2020). Volume Phase Holographic Lenses for Efficient Planar Solar Track-Concentrators. In: Di Francia, G., et al. Sensors and Microsystems. AISEM 2019. Lecture Notes in Electrical Engineering, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-37558-4_2

Download citation

Publish with us

Policies and ethics