Skip to main content

Gallium Oxide Materials and Devices

A Personal Recent History

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

Abstract

Gallium oxide has recently been found to be of high interest as the widest bandgap semiconductor for which single crystals bulk substrates are available and whose electronic conductivity can be controlled by n-type doping. Because wide-bandgap semiconductors lead to high breakdown voltages in small length scales, and the resistive losses over small length scales are low, the material has several attractive attributes for high-voltage electronic diodes and switches. In this chapter, I give a personal account of the materials science and physics of this exciting new semiconductor material and its initial use in device demonstrations. The intention of the personal account is to share the twisted and connected paths that lead one to a specific research direction—this is certainly true for how I ended up being interested in gallium oxide as an interesting semiconductor material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Dallesasse, N. Holonyak, J. Appl. Phys. 113, 051101 (2013)

    Article  Google Scholar 

  2. M. Passlack, E.F. Schubert, W.S. Hobson, M. Hong, N. Moriya, S.N.G. Chu, K. Konstadinidis, J.P. Mannaerts, M.L. Schnoes, G.J. Zydik, J. Appl. Phys. 77, 686 (1995)

    Article  CAS  Google Scholar 

  3. O. Bierwagen, Semicond. Sci. Technol. 30, 024001 (2015)

    Article  Google Scholar 

  4. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecher, R. Fornari, J. Appl. Phys. 110, 063720 (2011)

    Article  Google Scholar 

  5. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012)

    Article  Google Scholar 

  6. W.S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. van de Walle, Z. Galazka, M. Albrecht, R. Fornari, D. Jena, Appl. Phys. Lett. 104, 203111 (2014)

    Google Scholar 

  7. H. Peelaers, C.G. Van de Walle, Phys. Status Solidi B 252, 828 (2015)

    Article  CAS  Google Scholar 

  8. R. Jinno, T. Uchida, K. Kaneko, S. Fujita, Appl. Phys. Express 9, 071101 (2016)

    Article  Google Scholar 

  9. T. Oshima, Y. Kato, M. Imura, Y. Nakayama, M. Takeguchi, Appl. Phys. Express 11, 065501 (2018)

    Article  Google Scholar 

  10. Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, T. Luo, Appl. Phys. Lett. 106, 111909 (2015)

    Google Scholar 

  11. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, M. Higashiwaki, Jpn. J. Appl. Phys. 54, 112601 (2015)

    Google Scholar 

  12. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, D. Jena, Appl. Phys. Lett. 109, 212101 (2016)

    Article  Google Scholar 

  13. A. Parsini, R. Fornari, Semicond. Sci. Technol. 31, 035023 (2016)

    Article  Google Scholar 

  14. Y. Kang, K. Krishnamurthy, H. Peelaers, C. van de Walle, J. Phys.: Condens. Matter 29, 234001 (2017)

    Google Scholar 

  15. K. Ghosh, U. Singisetti, J. Mater. Res. 32, 4142 (2017)

    Article  CAS  Google Scholar 

  16. H. Zhou, K. Maize, G. Qiu, A. Shakouri, P. Ye, Appl. Phys. Lett. 111, 092102 (2017)

    Article  Google Scholar 

  17. M. Si, L. Yang, H. Zhou, P. Ye, ACS Omega 2, 7136 (2017)

    Article  CAS  Google Scholar 

  18. L. Zhang, A. Verma, H. Xing, D. Jena, Jpn. J. Appl. Phys. 56, 030304 (2017)

    Article  Google Scholar 

  19. P. Vogt, O. Brandt, H. Reichert, J. Lahnemann, O. Bierwagen, Phys. Rev. Lett. 119, 196001 (2017)

    Article  Google Scholar 

  20. E. Ahmadi, O.S. Koksaldi, X. Zheng, T. Mates, Y. Oshima, U.K. Mishra, J.S. Speck, Appl. Phys. Express 10, 071101 (2017)

    Article  Google Scholar 

  21. Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. Heremans, S. Rajan, Appl. Phys. Lett. 112, 173502 (2018)

    Google Scholar 

  22. M. Higashiwaki, G.H. Jessen, Appl. Phys. Lett. 112, 060401 (2018)

    Article  Google Scholar 

  23. K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, S. Yamakoshi, Thin Solid Films 666, 182 (2018)

    Article  CAS  Google Scholar 

  24. Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, H.G. Xing, IEEE Electron Device Lett. 39, 869 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Much of the initial phase of the work in my research group was kindly supported by the National Science Foundation DMREF Program under Grant 1534303 monitored by Dr. J. Schlueter and in part by AFOSR under Grant FA9550-17-1-0048 monitored by K. Goretta. Because of interest in this field and the formative work in the past few years, several countries have increased financial support of this material. For example, following the formative materials and device work in Japan, the GraFOX initiative was launched in Germany to study fundamental properties of oxides. In the USA, a Multidisciplinary University Research Initiative (MURI) was launched by Dr. Ali Sayir of the AFOSR in 2018. I believe these are the first steps toward building a firm foundation for an emerging field, and there will be several more in the future.

I would like to acknowledge the many collaborators mentioned in this chapter, and beyond, for introducing me to \(\upbeta \)-Ga\(_{2}\)O\(_{3}\), and giving me the opportunity to work on this semiconductor system. It is inevitable that I have skipped or missed several important topics, developments, and people in this personal review—for which I sincerely apologize. The purpose of this article is not so much to present a comprehensive review of the field for which we have this whole book and its excellent chapters. Rather, I have discussed candidly the various unexpected connections, unanticipated opportunities, constant struggles, and most importantly, the joy of discovery in this emerging field that I have experienced by my fortune of being an early adopter. I hope this chapter gives young researchers entering the field a sense that research in science and engineering is after all done by human beings (at least till now, till machines can learn and A.I. takes over!) and is a beautiful example of how friends across countries and continents work together to make true advance in a field and uncover new materials and phenomena. Personal friendships and connections, love for the subject, and a strong belief go a long way in uncovering new science and building new technologies from a mere few atoms in the seemingly vast abyss of combination of elements in the periodic table.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdeep Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, D. (2020). Gallium Oxide Materials and Devices. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_40

Download citation

Publish with us

Policies and ethics