Skip to main content

Electrical Properties 3

Traps in β-Ga2O3: From Materials to Transistors

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

  • 2542 Accesses

Abstract

Traps in ultra-wide bandgap semiconductors (UWBG) are problematic for devices due to the very wide range of performance degradation phenomena they can cause, from high leakage currents, dynamic resistance and voltage dispersion in transistors , to high dark currents, low quantum efficiencies and low responsivities in various optoelectronic devices. For β-Ga2O3 , the early stage of development for this promising UWBG semiconductor and associated lack of knowledge of many basic materials properties add more challenges as many of the trap states are unknown and their physical sources are poorly understood at present. This chapter summarizes the state of knowledge concerning deep level defects in β-Ga2O3 materials and early stage transistors . Deep level transient and optical spectroscopies (DLTS/DLOS) are the primary characterization methods being focused on here. DLTS/DLOS measurements made on β-Ga2O3 materials prepared by several growth methods and irradiated by high energy particles are discussed. Defect spectroscopy measurements made directly on β-Ga2O3 transistors are also described. Several traps that are in common across the range of materials and devices are revealed, several unique traps are identified, and by comparing with theory and other physical characterization results, the potential physical sources for several traps are considered. Finally, this chapter attempts to correlate defect levels found in β-Ga2O3 transistors with the fundamental materials studies, leading toward possible identification of specific defects as primary sources for transistor instabilities such as threshold voltage shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000)

    Article  CAS  Google Scholar 

  2. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, M. Higashiwaki, Jpn. J. Appl. Phys. 54, 112601 (2015)

    Google Scholar 

  3. E.G. Víllora, K. Shimamura, K. Kitamura, K. Aoki, Appl. Phys. Lett. 88, 031105 (2006)

    Article  Google Scholar 

  4. J.B. Varley, A. Janotti, C. Franchini, C.G. Van de Walle, Phys. Rev. B 85, 081109 (2012)

    Article  Google Scholar 

  5. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, Phys. Rev. B 74, 195123 (2006)

    Article  Google Scholar 

  6. P. Blood, J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, San Diego, 1992)

    Google Scholar 

  7. E. Farzana, E. Ahmadi, J.S. Speck, A.R. Arehart, S.A. Ringel, J. Appl. Phys. 123, 161410 (2018)

    Article  Google Scholar 

  8. A. Chantre, G. Vincent, D. Bois, Phys. Rev. B 23, 5335 (1981)

    Article  CAS  Google Scholar 

  9. R. Passler, J. Appl. Phys. 96, 715 (2004)

    Article  Google Scholar 

  10. G. Lucovsky, Solid State Commun. 3, 299 (1965)

    Article  CAS  Google Scholar 

  11. J.B. Varley, J.R. Weber, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 142106 (2010)

    Article  Google Scholar 

  12. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, J. Appl. Phys. 110, 063720 (2011)

    Article  Google Scholar 

  13. Z. Zhang, E. Farzana, A.R. Arehart, S.A. Ringel, Appl. Phys. Lett. 108, 052105 (2016)

    Article  Google Scholar 

  14. E. Farzana, M.F. Chaiken, T.E. Blue, A.R. Arehart, S.A. Ringel, APL Mater. 7, 022502 (2018)

    Article  Google Scholar 

  15. A.M. Armstrong, M.H. Crawford, A. Jayawardena, A. Ahyi, S. Dhar, J. Appl. Phys. 119, 103102 (2016)

    Article  Google Scholar 

  16. P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, T. Frauenheim, Phys. Rev. B 95, 075208 (2017)

    Google Scholar 

  17. S. Yamaoka, M. Nakayama, Phys. Status Solidi C 13, 93 (2016)

    Article  CAS  Google Scholar 

  18. S. Yamaoka, Y. Furukawa, M. Nakayama, Phys. Rev. B 95, 094304 (2017)

    Article  Google Scholar 

  19. O.F. Schirmer, J. Phys.: Condens. Matter 18, R667 (2006)

    CAS  Google Scholar 

  20. E. Farzana, A. Mauze, J.B. Varley, T.E. Blue, J.S. Speck, A.R. Arehart, S.A. Ringel, APL Mater. 7, 121102 (2019)

    Google Scholar 

  21. H. Peelaers, J.L. Lyons, J.B. Varley, C.G. Van de Walle, APL Mater. 7, 022519 (2019)

    Article  Google Scholar 

  22. J.F. McGlone, Z. Xia, Y. Zhang, C. Joishi, S. Lodha, S. Rajan, S.A. Ringel, A.R. Arehart, IEEE Electron Device Lett. 39, 1042 (2018)

    Article  CAS  Google Scholar 

  23. J.F. McGlone, Z. Xia, C. Joshi, S. Lodha, S. Rajan, S.A. Ringel, A.R. Arehart, Appl. Phys. Lett.

    Google Scholar 

  24. N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, G. Jessen, IEEE Electron Device Lett. 38, 775 (2017)

    Article  CAS  Google Scholar 

  25. M.H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 112, 023503 (2018)

    Article  Google Scholar 

  26. Z. Xia, C. Joishi, S. Krishnamoorthy, S. Bajaj, Y. Zhang, M. Brenner, S. Lodha, S. Rajan, IEEE Electron Device Lett. 39, 568 (2018)

    Article  CAS  Google Scholar 

  27. M.E. Ingebrigtsen, J.B. Varley, A.Y. Kuznetsov, B.G. Svensson, G. Alfieri, A. Mihaila, U. Badstübner, L. Vines, Appl. Phys. Lett. 112, 042104 (2018)

    Article  Google Scholar 

  28. A.Y. Polyakov, N.B. Smirnov, I.V. Shchemerov, E.B. Yakimov, J. Yang, F. Ren, G. Yang, J. Kim, A. Kuramata, S.J. Pearton, Appl. Phys. Lett. 112, 032107 (2018)

    Article  Google Scholar 

  29. M.E. Ingebrigtsen, A.Y. Kuznetsov, B.G. Svensson, G. Alfieri, A. Mihaila, U. Badstübner, A. Perron, L. Vines, J.B. Varley, APL Mater. 7, 022510 (2018)

    Article  Google Scholar 

  30. W. Sun, J. Joh, S. Krishnan, S. Pendharkar, C.M. Jackson, S.A. Ringel, A.R. Arehart, IEEE Trans. Electron Devices 66, 890 (2019)

    Article  CAS  Google Scholar 

  31. A.Y. Polyakov, N.B. Smirnov, I.V. Shchemerov, D. Gogova, S.A. Tarelkin, S.J. Pearton, J. Appl. Phys. 123, 115702 (2018)

    Article  Google Scholar 

  32. J. Kim, S.J. Pearton, C. Fares, J. Yang, F. Ren, S. Kim, A.Y. Polyakov, J. Mater. Chem. C 7, 10 (2019)

    Article  CAS  Google Scholar 

  33. A.Y. Polyakov, N.B. Smirnov, I.V. Shchemerov, E.B. Yakimov, S.J. Pearton, F. Ren, A.V. Chernykh, D. Gogova, A.I. Kochkova, ECS J. Solid State Sci. Technol. 8, Q3019 (2019)

    Article  CAS  Google Scholar 

  34. A.Y. Polyakov, N.B. Smirnov, I.V. Shchemerov, S.J. Pearton, F. Ren, A.V. Chernykh, P.B. Lagov, T.V. Kulevoy, APL Mater. 6, 096102 (2018)

    Article  Google Scholar 

  35. J.M. Johnson, Z. Chen, J.B. Varley, C.M. Jackson, E. Farzana, Z. Zhang, A.R. Arehart, H.-L. Huang, A. Gene, S.A. Ringel, C.G. Van de Walle, D.A. Muller, J. Hwang, Phys. Rev. X, 9, 041027 (2019)

    Google Scholar 

  36. H. Ghadi, J.F. McGlone, C.M. Jackson, E. Farzana, Z. Feng, A.F.M. Bhuiyan, H. Zhao, A.R. Arehart, and S.A. Ringel, APL Mater. 8, 021111 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the following sources: AFOSR via the GAME MURI Program, Grant No. FA9550-18-1-0479, and Grant No. FA9550-18-1-0059, both managed by Ali Sayir; and DTRA Grant No. HDTRA1-17-10034, managed by Jacob Calkins. The authors also acknowledge the students and postdoctoral researchers at The Ohio State University for their work, James S. Speck’s group at the University of California, Santa Barbara for providing samples, Siddharth Rajan’s group at The Ohio State University for providing the transistors in this study, and Gregg Jessen’s team at the Air Force Research Laboratory, WPAFB, OH for measurements and substrates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron R. Arehart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arehart, A.R., Ringel, S.A. (2020). Electrical Properties 3. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_24

Download citation

Publish with us

Policies and ethics