Skip to main content

Comparative Study on Deep Learning Frameworks for Object Detection

  • Conference paper
  • First Online:
Second International Conference on Computer Networks and Communication Technologies (ICCNCT 2019)

Abstract

Object detection is one among the major sub-domains of the computer vision which deals with the identification of objects of a pre-defined class. Recognition of object is imminent to identify numerous pertinent objects from an image or video. Several deep neural learning, machine learning based techniques are used for object detection in digital images and videos. This paper discusses a comparative study of some deep learning based object detection frameworks, and analysed on the benchmark mean Average Precision (mAP) and selected models are evaluated using PASCAL VOC 2007 dataset which is the standard image data set for object class identification and recognition. Among the selected detection models, PVANet has the highest mAP (84.9) with FPS 21.7 and is considered as the best object detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)

    Article  Google Scholar 

  2. Zhou, X., Gong, W., Fu, W., Du, F.: Application of deep learning in object detection. In: IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), vol. 1, pp. 631–634, China (2017)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  4. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  5. Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.: Microsoft COCO: common objects in context. In: Computer Vision–ECCV, pp. 740–755. Springer International Publishing (2014)

    Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88, 303–338 (2009)

    Article  Google Scholar 

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  8. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE (2005)

    Google Scholar 

  10. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proceedings. International Conference on Image Processing, vol. 1, pp. I–I. IEEE (2002)

    Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  Google Scholar 

  12. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  13. Xu, J., Ramos, S., Vazquez, D., Lopez, A.: Domain adaptation of deformable part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2367–2380 (2014)

    Article  Google Scholar 

  14. Girshick, R.: Fast R-CNN. ICCV (2015)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Computer Vision–ECCV 2014, pp. 346–361 (2014)

    Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017)

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2015)

    Google Scholar 

  18. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS (2016)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  20. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  21. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.: SSD: single shot multibox detector. In: Computer Vision–ECCV, pp. 21–37 (2016)

    Google Scholar 

  22. Li, Z., Fuqiang Z.: FSSD: feature fusion single shot multibox detector. In: CoRR (2018)

    Google Scholar 

  23. Hong, S., Roh, B., Kim, K., Cheon, Y., Park, M.: PVANet: lightweight deep neural networks for real-time object detection. In: NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN) (2016)

    Google Scholar 

  24. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  25. Shang, W., Sohn, K., Almeida, D., Lee, H.: Understanding and improving convolutional neural networks via concatenated rectified linear units. In: ICML (2016)

    Google Scholar 

  26. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizebeth Kurian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurian, E., Mathew, J. (2020). Comparative Study on Deep Learning Frameworks for Object Detection. In: Smys, S., Senjyu, T., Lafata, P. (eds) Second International Conference on Computer Networks and Communication Technologies. ICCNCT 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-030-37051-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37051-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37050-3

  • Online ISBN: 978-3-030-37051-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics