Skip to main content

Important Internet Applications of Classification

  • Chapter
  • First Online:
Classification Methods for Internet Applications

Part of the book series: Studies in Big Data ((SBD,volume 69))

  • 438 Accesses

Abstract

Summary of important internet applications of classification, including: spam filtering, recommender systems, sentiment analysis, example-based search, malware detection and network intrusion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Conversion in general is usually defined as any action that has been taken by the customer based on a given offer. For example submitting a form, scanning a coupon or subscribing to a newsletter. Key conversion presents the ultimate of these actions leading to fulfilment of designed goal. For example purchase, order or visit.

  2. 2.

    Indirect antonyms cannot be used, as they do not express opposite sentiment, as for example in relation child—parent.

  3. 3.

    Available at http://text-processing.com/demo/sentiment/.

  4. 4.

    skos prefix denotes the Simple Knowledge Organization System Schema by W3C.

  5. 5.

    By the time of writing this book available at: https://quickdraw.withgoogle.com.

References

  1. Hiskey, D.: How the word  “Spam” came to mean “Junk Message” (2010). http://www.todayifoundout.com/index.php/2010/09/

  2. European Parliament and the Council: Directive 2003/58/EC (2003). OJ L 221

    Google Scholar 

  3. Ministry of Justice of Canada: S.C. 2010, c.23. An Act to Promote the Efficiency and Adaptability of the Canadian Economy by Regulating Certain Activities That Discourage Reliance on Electronic Means of Carrying Out Commercial Activities, and to the Canadian Radio-Television and Telecommunications Commission Act, the Competition Act, the Personal Information Protection and Electronic Documents Act and the Telecommunications Act (2010)

    Google Scholar 

  4. Congress, U.S.: Controlling the assault of non-solicited pornography and marketing act. (CAN-SPAM Act) (2003)

    Google Scholar 

  5. O’Gorman, B., Wueest, C., O’Brien, D., Cleary, G., Lau, H., Power, J., M., C., Cox, O., Wood, P., Wallace, S.: Internet security threat report. Technical Report, Symantec (2019)

    Google Scholar 

  6. Gray, A., Haahr, M.: Personalised, collaborative spam filtering. In: Proceedings of CEAS (2004)

    Google Scholar 

  7. Boykin, P., Roychowdhury, V.: Leveraging social networks to fight spam. Computer 61–68 (2005)

    Google Scholar 

  8. Krasser, S., Tang, Y., Gould, J., Alperovitch, D., Judge, P.: Identifying image spam based on header and file properties using C4. 5 decision trees and support vector machine learning. In: 2007 Information Assurance and Security Workshop, IAW’07, pp. 255–261 (2007)

    Google Scholar 

  9. Vergelis, M., Demidova, N., Scherbakova, T.: Spam and phishing in Q3 2018. Technical report, AO Kaspersky Lab (2018)

    Google Scholar 

  10. Gourville, J., Soman, D.: Overchoice and assortment type: when and why variety backfires. Mark. Sci. 24, 382–395 (2005)

    Article  Google Scholar 

  11. Alspector, J., Koicz, A., Karunanithi, N.: Feature-based and clique-based user models for movie selection: a comparative study. User Model. User-Adapt. Interact. 7, 279–304 (1997)

    Article  Google Scholar 

  12. Robinson, G.: Automated collaborative filtering in world wide web advertising. US Patent 5,918,014 (1999)

    Google Scholar 

  13. Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T.: The YouTube video recommendation system. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 293–296 (2010)

    Google Scholar 

  14. McGinty, L., Smyth, B.: On the role of diversity in conversational recommender systems. In: International Conference on Case-Based Reasoning, pp. 276–290 (2003)

    Google Scholar 

  15. Resnick, P., Varian, H.: Recommender systems. Commun. ACM 40, 56–58 (1997)

    Article  Google Scholar 

  16. Schafer, J., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158–166 (1997)

    Google Scholar 

  17. Terveen, L., Hill, W.: Human-Computer Interaction in the New Millenium. Addison-Wesley, Reading (2001)

    Google Scholar 

  18. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: The Semantic Web: 6th International Semantic Web Conference + 2nd Asian Semantic Web Conference, pp. 722–735 (2007)

    Google Scholar 

  19. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186 (1994)

    Google Scholar 

  20. Satzger, B., Endres, M., Kießling, W.: A preference-based recommender system. In: E-Commerce and Web Technologies, pp. 31–40. Springer (2006)

    Google Scholar 

  21. Chirita, P., Nejdl, W., Zamfir, C.: Preventing shilling attacks in online recommender systems. In: Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management, pp. 67–74 (2005)

    Google Scholar 

  22. Lam, S., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web, pp. 393–402 (2004)

    Google Scholar 

  23. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005)

    Article  Google Scholar 

  24. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12, 331–370 (2002)

    Article  MATH  Google Scholar 

  25. Kabiljo, M., Ilic, A.: Recommending items to more than a billion people. https://code.facebook.com/posts/861999383875667 (2015)

  26. Ricci, F.: Mobile recommender systems. Inf. Technol. Tour. 12, 205–231 (2010)

    Article  Google Scholar 

  27. Commission Nationale de l’Informatique et des Libertés: The French Data Protection Authority Publicly Issues Formal Notice to Facebook to Comply with the French Data Protection Act Within Three Months. https://www.cnil.fr/en/french-data-protection-authority-publicly-issues-formal-notice-facebook-comply-french-data (2016)

  28. European Commission: Information providers guide, the EU internet handbook: Cookies. http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm (2016)

  29. Horrigan, J.: Online shopping. Technical Report, Pew Research Center. Internet & American Life Project (2008)

    Google Scholar 

  30. ComScore: Online consumer-generated reviews have significant impact on offline purchase behavior. http://www.comscore.com/press/release.asp?press=1928 (2015)

  31. Rainie, L., Horrigan, J.: Election 2006 online. Technical report, Pew Research Center. Internet & American Life Project (2007)

    Google Scholar 

  32. Su, F., Markert, K.: From words to senses: a case study of subjectivity recognition. In: Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1, pp. 825–832 (2008)

    Google Scholar 

  33. Subasic, P., Huettner, A.: Affect analysis of text using fuzzy semantic typing. IEEE Trans. Fuzzy Syst. 9, 483–496 (2001)

    Article  Google Scholar 

  34. Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs. In: International Conference on Weblogs and Social Media, pp. 219–222 (2007)

    Google Scholar 

  35. Presser, M., Barnaghi, P., Eurich, M., Villalonga, C.: The SENSEI project: integrating the physical world with the digital world of the network of the future. IEEE Commun. Mag. 47, 1–4 (2009)

    Article  Google Scholar 

  36. O’ Brien, S.: Humans and machines team up to predict brexit campaign result by analysing UK social chatter. Technical Report, Sensei Project (2016)

    Google Scholar 

  37. Sheth, A., Jadhav, A., Kapanipathi, P., Lu, C., Purohit, H., Smith, G., Wang, W.: Twitris: a system for collective social intelligence. In: Encyclopedia of Social Network Analysis and Mining, pp. 2240–2253. Springer (2014)

    Google Scholar 

  38. Donovan, J.: The Twitris sentiment analysis tool by Cognovi Labs predicted the brexit hours earlier than polls. https://techcrunch.com/2016/06/29/the-twitris-sentiment-analysis-tool-by-cognovi-labs-predicted-the-brexit-hours-earlier-than-polls/ (2016)

  39. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 1–135 (2008)

    Article  Google Scholar 

  40. Leacock, C., Miller, G., Chodorow, M.: Using corpus statistics and WordNet relations for sense identification. Comput. Ling. 24, 147–165 (1998)

    Google Scholar 

  41. Miller, G.: WordNet: a lexical database for English. Commun. ACM 38, 39–41 (1995)

    Article  Google Scholar 

  42. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Language Resources and Evaluation Conference, pp. 2200–2204 (2010)

    Google Scholar 

  43. Turney, P., Littman, M.: Measuring praise and criticism: inference of semantic orientation from association. ACM Trans. Inf. Syst. 21, 315–346 (2003)

    Article  Google Scholar 

  44. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). ArXiv preprint arxiv:1301.3781

  45. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: 52th Annual Conference of the Association for Computational Linguistics, pp. 1555–1565 (2014)

    Google Scholar 

  46. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  47. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86 (2002)

    Google Scholar 

  48. Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Eighth International AAAI Conference on Weblogs and Social Media, pp. 216–225 (2014)

    Google Scholar 

  49. Perkins, J.: Python Text Processing with NLTK 2.0 Cookbook. Packt Publishing, Birmingham (2010)

    Google Scholar 

  50. Subrahmanian, V., Reforgiato, D.: AVA: adjective-verb-adverb combinations for sentiment analysis. IEEE Intell. Syst. 23, 43–50 (2008)

    Article  Google Scholar 

  51. Gamallo, P., Garcia, M.: Citius: A Naive-Bayes strategy for sentiment analysis on English tweets. In: International Workshop on Semantic Evaluation, pp. 171–175 (2014)

    Google Scholar 

  52. Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In: Empirical Methods in Natural Language Processing, pp. 2539–2544 (2015)

    Google Scholar 

  53. Boiy, E., Moens, M.: A machine learning approach to sentiment analysis in multilingual web texts. Inf. Retr. 12, 526–558 (2009)

    Article  Google Scholar 

  54. Hallmann, K., Kunneman, F., Liebrecht, C., van den Bosch, A., van Mulken, M.: Sarcastic soulmates: intimacy and irony markers in social media messaging. Linguist. Issues Lang. Technol. 14, Paper 7 (2016)

    Google Scholar 

  55. Cheang, H., Pell, M.: The sound of sarcasm. Speech Commun. 50, 315–346 (2008)

    Article  Google Scholar 

  56. Narayanan, R., Liu, B., Choudhary, A.: Sentiment analysis of conditional sentences. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pp. 180–189 (2009)

    Google Scholar 

  57. Devillers, L., Vidrascu, L.: Real-life emotions detection with lexical and paralinguistic cues on human-human call center dialogs. In: International Conference on Spoken Language Processing, Interspeech, pp. 801–804 (2006)

    Google Scholar 

  58. Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28, 15–21 (2013)

    Article  Google Scholar 

  59. Poria, S., Cambria, E., Hussain, A., Huang, G.: Towards an intelligent framework for multimodal affective data analysis. Neural Netw. 63, 104–116 (2015)

    Article  Google Scholar 

  60. Pu, P., Kumar, P.: Evaluating example-based search tools. In: ACM 5th Conference on Electronic Commerce, pp. 208–217 (2004)

    Google Scholar 

  61. Tesic, J.: Metadata practices for consumer photos. IEEE Multimed. 12, 86–92 (2005)

    Article  Google Scholar 

  62. International Organization for Standardization: Graphic Technology—Extensible Metadata Platform (XMP) Specification (2012)

    Google Scholar 

  63. American National Standards Institute, National Information Standards Organization: The Dublin Core Metadata Element Set (2013)

    Google Scholar 

  64. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284, 28–37 (2001)

    Article  Google Scholar 

  65. Castells, P., Fernandez, M., Vallet, D.: An adaptation of the vector-space model for ontology-based information retrieval. IEEE Trans. Knowl. Data Eng. 19, 261–272 (2007)

    Article  Google Scholar 

  66. Hollink, L., Schreiber, G., Wielemaker, J., Wielinga, B.: Semantic annotation of image collections. In: Knowledge Capture 2003—Knowledge Markup and Semantic Annotation Workshop, pp. 41–48 (2003)

    Google Scholar 

  67. Jonquet, C., LePendu, P., Falconer, S., Coulet, A., Noy, N., Musen, M., Shah, N.: NCBO resource index: ontology-based search and mining of biomedical resources. Web Seman. Sci. Serv. Agents World Wide Web 9, 316–324 (2011)

    Article  Google Scholar 

  68. Mac Kenzie, I., Zhang, S.: The immediate usability of graffiti. In: Graphics Interface, pp. 129–137 (1997)

    Google Scholar 

  69. Költringer, T., Grechenig, T.: Comparing the immediate usability of graffiti 2 and virtual keyboard. In: Human Factors in Computing Systems, pp. 1175–1178 (2004)

    Google Scholar 

  70. Tappert, C., Suen, C., Wakahara, T.: The state of the art in online handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12, 787–808 (1990)

    Article  Google Scholar 

  71. Kirsch, D.: Detexify: Erkennung handgemalter latex-symbole. Ph.D. thesis, Westfälische Wilhelms-Universität Münster (2010)

    Google Scholar 

  72. Müller, M.: Information Retrieval for Music and Motion. Springer, Berlin (2007)

    Google Scholar 

  73. Keysers, D., Deselaers, T., Rowley, H., Wang, L., Carbune, V.: Multi-language online handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1180–1194 (2017)

    Article  Google Scholar 

  74. Ouyang, T., Davis, R.: A visual approach to sketched symbol recognition. In: IJCAI’09: 21st International Joint Conference on Artifical Intelligence, pp. 1463–1468 (2009)

    Google Scholar 

  75. Tang, X., Wang., X.: Face sketch synthesis and recognition. In: 9th IEEE International Conference on Computer Vision, pp. 687–694 (2003)

    Google Scholar 

  76. Jayant, N., Johnston, J., Safranek, R.: Signal compression based on models of human perception. Proc. IEEE 81, 1385–1422 (1993)

    Article  Google Scholar 

  77. Paola, J., Schowengerdt, R.: The effect of lossy image compression on image classification. In: International Geoscience and Remote Sensing Symposium—Quantitative Remote Sensing for Science and Applications, pp. 118–120 (1995)

    Google Scholar 

  78. Hafner, J., Sawhney, H., Equitz, W., Flickner, M., Niblack, W.: Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. Pattern Anal. Mach. Intell. 7, 729–736 (1995)

    Article  Google Scholar 

  79. Deng, Y., Manjunath, B., Kenney, C., Moore, M., Shin, H.: An efficient color representation for image retrieval. IEEE Trans. Image Process. 10, 140–147 (2001)

    Article  MATH  Google Scholar 

  80. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  81. Lowe, D.: Object recognition from local scale-invariant features. In: 7th IEEE International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  82. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: European Conference on Computer Vision, pp. 404–417 (2006)

    Google Scholar 

  83. Yang, J., Jiang, Y., Hauptman, A., Ngo, C.: Evaluating bag-of-visual-words representations in scene classification. In: ACM International Workshop on Multimedia Information Retrieval, pp. 197–206 (2007)

    Google Scholar 

  84. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  85. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: European Conference on Computer Vision, pp. 428–441 (2006)

    Google Scholar 

  86. Chen, M., Hauptmann, A.: MoSIFT: recognizing human actions in surveillance videos. Technical Report, CMU, Computer Science Department (2009)

    Google Scholar 

  87. Chaudry, R., Ravichandran, A., Hager, G., Vidal, R.: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1932–1939 (2009)

    Google Scholar 

  88. Laptev, I., Pérez, P.: Retrieving actions in movies. In: 11th International Conference on Computer Vision (2007)

    Google Scholar 

  89. International Organization for Standardization: Information technology—Multimedia content description interface—Part 4: Audio (2002)

    Google Scholar 

  90. Wang, A.: The Shazam music recognition service. Commun. ACM 49, 44–48 (2006)

    Article  Google Scholar 

  91. Harb, H., Chen, L.: A query by example music retrieval algorithm. In: European Workshop on Image Analysis for Multimedia Interactive Services, pp. 122–128 (2003)

    Google Scholar 

  92. Tsai, W., Yu, H.: Query-by-example technique for retrieving cover versions of popular songs with similar melodies. In: Ismir, vol. 5, pp. 183–190 (2005)

    Google Scholar 

  93. Salamon, J., Gomez, E.: Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Trans. Audio Speech Lang. Process. 20, 1759–1770 (2012)

    Article  Google Scholar 

  94. Tao, L., Xinaglin, H., Lifang, Y., Pengju, Z.: Query by humming: comparing voices to voices. In: International Conference on Management and Service Science, pp. 5–8 (2009)

    Google Scholar 

  95. Myers, G., Nallapati, R., van Hout, J., Pancoast, S., Nevatia, R., Sun, C., Habibian, A., Koelma, D., van de Sande, K.E., Smeulders, A., Snoek, C.: Evaluating multimedia features and fusion for example-based event detection. Mach. Vis. Appl. 25, 17–32 (2014)

    Article  Google Scholar 

  96. Sadanand, S., Corso, J.: Action bank: a high-level representation of activity in video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1234–1241 (2012)

    Google Scholar 

  97. Lan, Z., Bao, L., Yu, S., Liu, W., Hauptmann, A.: Double fusion for multimedia event detection. In: Advances in Multimedia Modeling, pp. 173–185 (2012)

    Google Scholar 

  98. Morgan, S.: Cybercrime report. Technical Report, Cybersecurity Ventures (2017)

    Google Scholar 

  99. Richards, K., LaSalle, R., Devost, M., van den Dool, F., Kennedy-White, J.: Cost of cyber crime study. Technical Report, Accenture, Penomon Institute LLC (2017)

    Google Scholar 

  100. Lo, R., Levitt, K., Olsson, R.: MCF: a malicious code filter. Comput. Secur. 14, 541–566 (1995)

    Article  Google Scholar 

  101. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Computer Security Applications Conference, pp. 421–430 (2007)

    Google Scholar 

  102. Ahmadi, M., Ulyanov, D., Trofimov, M., Giacinto, G.: Novel feature extraction, selection and fusion for effective malware family classification. In: Sixth ACM Conference on Data and Application Security and Privacy, pp. 183–194 (2016)

    Google Scholar 

  103. Cesare, S., Xiang, Y.: Classification of malware using structured control flow. In: Eighth Australasian Symposium on Parallel and Distributed Computing, pp. 61–70 (2010)

    Google Scholar 

  104. Han, K., Kang, B., Im, E.: Malware analysis using visualized image matrices. Sci. World J. 14, 1–14 (2015)

    Google Scholar 

  105. Kiechle, D.: Fehlerraumapproximation durch verwendung von basisblock-fehlerinjektion. Master’s thesis, Leibniz University Hannover (2018)

    Google Scholar 

  106. Bruschi, D., Martignoni, L., Monga, M.: Using code normalization for fighting self-mutating malware. In: International Symposium on Secure Software Engineering, pp. 37–44 (2006)

    Google Scholar 

  107. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. Technical Report, Department of Computer Sciences, University of Wisconsin, Madison (2006)

    Google Scholar 

  108. Kinable, J., Kostakis, O.: Malware classification based on call graph clustering. J. Comput. Virol. Hacking Tech. 7, 351–366 (2011)

    Google Scholar 

  109. Kong, D., Yan, G.: Discriminant malware distance learning on structural information for automated malware classification. In: 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1357–1365 (2013)

    Google Scholar 

  110. Santos, I., Penya, Y., Deves, J., Bringas, P.: N-grams-based file signatures for malware detection. In: 11th International Conference on Enterprise Information Systems, pp. 317–320 (2009)

    Google Scholar 

  111. Kephart, J.: A biologically inspired immune system for computers. In: Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pp. 130–139 (1994)

    Google Scholar 

  112. Reddy, D., Puajri, A.: N-gram analysis for computer virus detection. J. Comput. Virol. Hacking Tech. 2, 231–239 (2006)

    Article  Google Scholar 

  113. Stiborek, J.: Dynamic reconfiguration of intrusion detection systems. Ph.D. thesis, Czech Technical University, Prague (2017)

    Google Scholar 

  114. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: Malware images: visualization and automatic classification. In: 8th International Symposium on Visualization for Cyber Security, pp. 29–35 (2011)

    Google Scholar 

  115. Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware classification using binary texture analysis and dynamic analysis. In: 4th ACM Workshop on Security and Artificial Intelligence, pp. 21–30 (2011)

    Google Scholar 

  116. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer: using system-centric models for malware protection. In: 17th ACM Conference on Computer and Communications Security, pp. 399–412 (2010)

    Google Scholar 

  117. Canzanese, R., Kam, M., Mancoridis, S.: Toward an automatic, online behavioral malware classification system. In: 7th IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 111–120 (2013)

    Google Scholar 

  118. Canzanese, R., Mancoridis, S., Kam, M.: Run-time classification of malicious processes using system call analysis. In: 10th International Conference on Malicious and Unwanted Software, pp. 21–28 (2015)

    Google Scholar 

  119. Pfoh, J., Schneider, C., Eckert, C.: Leveraging string kernels for malware detection. In: International Conference on Network and System Security, pp. 206–219 (2013)

    Google Scholar 

  120. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 19, 639–668 (2011)

    Article  Google Scholar 

  121. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Google Scholar 

  122. Kolbitsch, C., Camparetti, P., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effective and efficient malware detection at the end host. In: USENIX Security Symposium, pp. 351–366 (2009)

    Google Scholar 

  123. Kolbitsch, C., Holz, T., Kruegel, C., Kirda, E.: Inspector gadget: automated extraction of proprietary gadgets from malware binaries. In: IEEE Symposium on Security and Privacy, pp. 29–44 (2010)

    Google Scholar 

  124. Park, Y., Reeves, D., Mulukutla, V., Sundaravel, M.: Fast malware classification by automated behavioral graph matching. In: Sixth Annual Workshop on Cyber Security and Information Intelligence Research, pp. 45/1–4 (2010)

    Google Scholar 

  125. Park, Y., Reeves, D., Stamp, M.: Deriving common malware behavior through graph clustering. Comput. Secur. 39, 419–430 (2013)

    Article  Google Scholar 

  126. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.: A layered architecture for detecting malicious behaviors. In: International Workshop on Recent Advances in Intrusion Detection, pp. 78–97 (2008)

    Google Scholar 

  127. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of malware behavior. In: International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 108–125 (2008)

    Google Scholar 

  128. Willems, C., Holz, T., Freiling, F.: CWSandbox: towards automated dynamic binary analysis. IEEE Secur. Priv. 5, 32–39 (2007)

    Article  Google Scholar 

  129. Hunt, G., Brubacher, D.: Detours: binary interception of Win32 functions. In: Third USENIX Windows NT Symposium, pp. 145–154 (1999)

    Google Scholar 

  130. Stiborek, J., Pevný, T., Řehák, M.: Multiple instance learning for malware classification. Expert Syst. Appl. 93, 346–357 (2018)

    Article  Google Scholar 

  131. Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the static/dynamic gap. In: Fifth ACM Workshop on Security and Artificial Intelligence, pp. 3–14 (2012)

    Google Scholar 

  132. Gönen, M., Alpaydm, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)

    MathSciNet  MATH  Google Scholar 

  133. Santos, I., Devesa, J., Brezo, F., Nieves, J., Bringas, P.: OPEM: A static-dynamic approach for machine-learning-based malware detection. In: International Joint Conference CISIS’12-ICEUTE’12-SOCO’12 Special Sessions, pp. 271–280 (2013)

    Google Scholar 

  134. Beek, C., Dunton, T., Grobman, S., Karlton, M., Minihane, N., Palm, C., Peterson, E., Samani, R., Schmugar, C., Sims, R., Sommer, D., Sun, B.: McAfee labs threat report. Technical Report, McAfee (2017)

    Google Scholar 

  135. Bontchev, V.: Current status of the CARO malware naming scheme. Slides presented in Virus Bulletin (2005)

    Google Scholar 

  136. Kuo, J., Beck, D.: The common malware enumeration (CME) initiative. Presented at the Virus Bulletin Conference (2005)

    Google Scholar 

  137. Depren, O., Topallar, M., Amarim, E., Ciliz, M.: An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks. Expert Syst. Appl. 29, 713–722 (2005)

    Article  Google Scholar 

  138. Gong, Y., Mabu, S., Chen, C., Wang, Y., Hirasawa, K.: Intrusion detection system combining misuse detection and anomaly detection using genetic network programming. In: ICCAS-SICE, pp. 3463–3467 (2009)

    Google Scholar 

  139. Anderson, J.: Computer security threat monitoring and surveillance. Technical Report, James P. Anderson Company, Fort Washington (1980)

    Google Scholar 

  140. Denning, D.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13, 222–232 (1987)

    Article  Google Scholar 

  141. Neumann, P.: Audit trail analysis and usage collection and processing. Technical Report, SRI International (1985)

    Google Scholar 

  142. Smaha, S.: Haystack: an intrusion detection system. In: 4th IEEE Aerospace Computer Security Applications Conference, pp. 37–44 (1988)

    Google Scholar 

  143. Snapp, S., Brentano, J., Dias, G.V., Goan, T., Heberlein, L., Ho, C.L., Levitt, K., Mukherjee, B., Smaha, S., Grance, T., Teal, D., Mansur, D.: DIDS (distributed intrusion detection system)—motivation, architecture, and an early prototype. In: National Computer Security Conference, pp. 167–176 (1991)

    Google Scholar 

  144. Heberlein, L., Dias, G., Levitt, K., Mukherjee, B., Wood, J., Wolber, D.: A network security monitor. In: IEEE Computer Society Symposium on Research in Security and Privacy, pp. 296–304 (1990)

    Google Scholar 

  145. Lunt, T.: IDES: an intelligent system for detecting intruders. In: Symposium on Computer Security, Threat and Countermeasures, pp. 30–45 (1990)

    Google Scholar 

  146. Anderson, D., Frivold, T., Valdes, A.: Next-generation intrusion detection expert system (NIDES): a summary. Technical Report, SRI International, Menlo Park (1995)

    Google Scholar 

  147. Roesch, M.: Snort-lightweight intrusion detection for networks. In: USENIX 13th Conference on System Administration, pp. 229–238 (1999)

    Google Scholar 

  148. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31, 2435–2463 (1999)

    Article  Google Scholar 

  149. DasGupta, D.: An overview of artificial immune systems and their applications. In: Artificial Immune Systems and Their Applications, pp. 3–21. Springer (1993)

    Google Scholar 

  150. Debar, H., Becker, M., Siboni, D.: A neural network component for an intrusion detection system. In: IEEE Computer Society Symposium on Research in Security and Privacy, pp. 240–250 (1992)

    Google Scholar 

  151. Ryan, J., Lin, M., Miikkulainen, R.: Intrusion detection with neural networks. Adv. Neural Inf. Process. Syst. 10, 943–949 (1998)

    Google Scholar 

  152. Cannady, J.: Artificial neural networks for misuse detection. In: National Information Systems Security Conference, pp. 368–381 (1998)

    Google Scholar 

  153. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection using neural networks and support vector machines. In: International Joint Conference on Neural Networks, pp. 1702–1707 (2002)

    Google Scholar 

  154. Deng, H., Zeng, Q., Agrawal, D.: SVM-based intrusion detection system for wireless ad-hoc networks. In: 58th IEEE Vehicular Technology Conference, pp. 2147–2151 (2003)

    Google Scholar 

  155. Sabhnani, M., Serpen, G.: Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context. In: International Conference on Machine Learning, Models, Technologies and Applications, pp. 209–215 (2003)

    Google Scholar 

  156. Li, W.: Using genetic algorithm for network intrusion detection. In: United States Department of Energy Cyber Security Group Training Conference, pp. 24–27 (2004)

    Google Scholar 

  157. Tsai, C., Hsu, Y., Lin, C., Lin, W.: Intrusion detection by machine learning: a review. Expert Syst. Appl. 36, 11994–12000 (2009)

    Article  Google Scholar 

  158. Wu, S., Banzhaf, W.: The use of computational intelligence in intrusion detection systems: a review. Appl. Soft Comput. 10, 1–35 (2010)

    Article  Google Scholar 

  159. Axelsson, S.: Intrusion detection systems: a survey and taxonomy. Technical Report, Chalmers University of Technology, Göteborg (2000)

    Google Scholar 

  160. Innella, P.: The evolution of intrusion detection systems. Technical Report, Symantec (2011)

    Google Scholar 

  161. Machlica, L., Bartoš, K., Sofka, M.: Learning detectors of malicious web requests for intrusion detection in network traffic (2017). arXiv preprint arxiv:1702.02530

  162. Sindhu, S., Geetha, S., Kannan, A.: Decision tree based light weight intrusion detection using a wrapper approach. Expert Syst. Appl. 39, 129–141 (2012)

    Article  Google Scholar 

  163. Beek, C., Dinkar, D., Frost, D., Grandjean, E., Moreno, F., Peterson, E., Rao, P., Samani, R., Schmugar, C., Simon, R., Sommer, D., Sun, B., Valenzuela, I., Weafer, V.: McAfee labs threat report. Technical Report, McAfee (2017)

    Google Scholar 

  164. Lunt, T.: Detecting intruders in computer systems. In: Conference on Auditing and Computer Technology (1993)

    Google Scholar 

  165. Daniels, T., Spafford, E.: Identification of host audit data to detect attacks on low-level IP vulnerabilities. J. Comput. Secur. 7, 3–35 (1999)

    Article  Google Scholar 

  166. Lindqvist, U., Porras, P.: Detecting computer and network misuse through the production-based expert system toolset P-BEST. In: IEEE Symposium on Security and Privacy, pp. 146–161 (1999)

    Google Scholar 

  167. Eckmann, S., Vigna, G., Kemmerer, R.: STATL: an attack language for state-based intrusion detection. J. Comput. Secur. 10, 71–103 (2002)

    Article  Google Scholar 

  168. Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical programs in distributed systems: a specification-based approach. In: IEEE Symposium on Security and Privacy, pp. 175–187 (1997)

    Google Scholar 

  169. Chari, S., Cheng, P.: BlueBox: a policy-driven, host-based intrusion detection system. ACM Trans. Inf. Syst. Secur. 6, 173–200 (2003)

    Article  Google Scholar 

  170. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.: A secure environment for untrusted helper applications: confining the wily hacker. In: USENIX Security Symposium, Focusing on Applications of Cryptography, pp. 1–13 (1996)

    Google Scholar 

  171. Keragala, D.: Detecting malware and sandbox evasion techniques. Technical Report, SANS Institute InfoSec Reading Room (2016)

    Google Scholar 

  172. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for Unix processes. In: IEEE Symposium on Security and Privacy, pp. 120–128 (1996)

    Google Scholar 

  173. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call stack information. In: IEEE Symposium on Security and Privacy, pp. 62–75 (2003)

    Google Scholar 

  174. Luotonen, A.: The common log file format. Technical Report, CERN (1995)

    Google Scholar 

  175. Hallam-Baker, P., Behlendorf, B.: Extended log file format: W3C working draft WD-logfile-960323. Technical Report, W3C (1996)

    Google Scholar 

  176. Vigna, G., Valeur, F., Kemmerer, R.: Designing and implementing a family of intrusion detection systems. ACM SIGSOFT Softw. Eng. Notes 28, 88–97 (2003)

    Article  Google Scholar 

  177. Low, W., Lee, J., Teoh, P.: DIDAFIT: detecting intrusions in databases through fingerprinting transactions. In: ICEIS, pp. 121–128 (2002)

    Google Scholar 

  178. Krügel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Tenth ACM Conference on Computer and Communications Security, pp. 251–261 (2003)

    Google Scholar 

  179. Puš, V., Velan, P., Kekely, L., Kořenek, J., Minařík, P.: Hardware accelerated flow measurement of 100 GB Ethernet. In: IFIP/IEEE International Symposium on Integrated Network Management, pp. 1147–1148 (2015)

    Google Scholar 

  180. Fifield, D., Lan, C., Hynes, R., Wegmann, P., Paxson, V.: Blocking-resistant communication through domain fronting. Proc. Priv. Enhanc. Technol. 2, 46–64 (2015)

    Article  Google Scholar 

  181. Whatley, J.: SAS/OR user’s guide: Version 5 netflow procedure. Technical Report. SAS Institute, Inc (1985)

    Google Scholar 

  182. Claise, B.: Cisco systems netflow services export version 9. Technical Report, Cisco Systems, Inc (2003)

    Google Scholar 

  183. Claise, B., Fullmer, M., Calato, P., Penno, R.: Ipfix protocol specification. Technical Report, Cisco Systems (2005)

    Google Scholar 

  184. Fung, C., Boutaba, R.: Design and management of collaborative intrusion detection networks. In: IFIP/IEEE International Symposium on Integrated Network Management, pp. 955–961 (2013)

    Google Scholar 

  185. Spitzner, L.: The honeynet project: trapping the hackers. IEEE Secur. Priv. 99, 15–23 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Holeňa .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holeňa, M., Pulc, P., Kopp, M. (2020). Important Internet Applications of Classification. In: Classification Methods for Internet Applications. Studies in Big Data, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-36962-0_1

Download citation

Publish with us

Policies and ethics