Skip to main content

Effect of Data Augmentation and Lung Mask Segmentation for Automated Chest Radiograph Interpretation of Some Lung Diseases

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Abstract

The results of chest X-ray (CXR) analysis of 2D images to get the statistically reliable predictions of some lung diseases by computer-aided diagnosis (CADx) based on the convolutional neural network (CNN) are presented for the largest open CXR dataset with radiologist-labeled reference standard evaluation sets (CheXpert). The results demonstrate the lower validation loss and higher area under curve (AUC) values for the receiver operating characteristic curve (ROC) for the models with lung mask segmentation (for 4 from 14 lung diseases) and data augmentation (for 10 from 14 lung diseases) for small image sizes (\(320\times 320\) pixels) and standard CNN (like DenseNet121) even. Moreover, the additional training leads to the lower validation loss and higher AUC values for the model with data augmentation. The further progress of CADx is assumed to be obtained for the big datasets with the bigger original image sizes by longer training with the tuned data augmentation.

The work was partially supported by Huizhou Science and Technology Bureau and Huizhou University (Huizhou, P.R.China) in the framework of Platform Construction for China-Ukraine Hi-Tech Park Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen, D., Wu, G., Suk, H.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  3. Smistad, E., et al.: Medical image segmentation on GPUs - a comprehensive review. Med. Image Anal. 20(1), 1–18 (2015)

    Article  Google Scholar 

  4. Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  5. Irvin, J., et al.: CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. arXiv preprint arXiv:1901.07031 (2019)

  6. Gordienko, Y., et al.: Deep Learning with lung segmentation and bone shadow exclusion techniques for chest X-ray analysis of lung cancer. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2018. AISC, vol. 754, pp. 638–647. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_63

    Chapter  Google Scholar 

  7. Peng, G., et al.: Dimensionality reduction in deep learning for chest X-ray analysis of lung cancer. In: Proceedings of 10th International Conference on Advanced Computational Intelligence, ICACI 2018, pp. 878–883. IEEE (2018)

    Google Scholar 

  8. Stirenko, S., et al.: Chest X-ray analysis of tuberculosis by deep learning with segmentation and augmentation. In: Proceedings of IEEE 38th International Conference on Electronics and Nanotechnology, pp. 422–428. IEEE (2018)

    Google Scholar 

  9. Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174, 71–74 (2000)

    Article  Google Scholar 

  10. Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  11. Jaeger, S., et al.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475–477 (2014)

    Google Scholar 

  12. Wang, X., et al.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2097–2106. IEEE (2017). arXiv preprint arXiv:1705.02315

  13. van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006)

    Article  Google Scholar 

  14. Hashemi, A., Pilevar, A.H.: Mass detection in lung CT images using region growing segmentation and decision making based on fuzzy systems. Int. J. Image Graph. Signal Process. 6(1), 1–8 (2013)

    Article  Google Scholar 

  15. Juhász, S., Horváth, Á., Nikházy, L., Horváth, G., Horváth, Á.: Segmentation of anatomical structures on chest radiographs. In: Bamidis, P.D., Pallikarakis, N. (eds.) XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. IFMBE Proceedings, vol. 29, pp. 359–362. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13039-7_90

    Chapter  Google Scholar 

  16. Kochura, Yu., Gordienko, Yu., Stirenko, S., et al.: Aggressive data augmentation and segmentation for lung disease diagnostics by deep learning (2019, submitted)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Chollet, F.: Deep Learning with Python. Manning Publications, New York (2018)

    Google Scholar 

  19. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint:1603.04467 (2016)

    Google Scholar 

  20. Gordienko, N., Lodygensky, O., Fedak, G., Gordienko, Yu.: Synergy of volunteer measurements and volunteer computing for effective data collecting, processing, simulating and analyzing on a worldwide scale. In: Proceedings of the IEEE 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 193–198. IEEE (2015)

    Google Scholar 

  21. Rather, N.N., Patel, C.O., Khan, S.A.: Using deep learning towards biomedical knowledge discovery. Int. J. Math. Sci. Comput. 3(2), 1–10 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Gordienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gang, P. et al. (2019). Effect of Data Augmentation and Lung Mask Segmentation for Automated Chest Radiograph Interpretation of Some Lung Diseases. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1142. Springer, Cham. https://doi.org/10.1007/978-3-030-36808-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36808-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36807-4

  • Online ISBN: 978-3-030-36808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics