Skip to main content

Impact of Silver Nanoparticles (AgNPs) on Plant Systems

  • Chapter
  • First Online:
Plant Responses to Nanomaterials

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 643 Accesses

Abstract

From last few decades, the field of nanotechnology has been well-established in relation with the industrial applications and hence has led to foreseeable discharge of nanoparticles into the environment. Among them, silver nanoparticles (AgNPs) are very commonly utilized nanoparticles specifically in the agricultural practices. Silver and silver salts have been used since the development of human civilization, though the production of AgNPs has currently come in existence. Their applications are mainly focused in the fields of medical and agriculture, and they also possess the properties like antioxidant, antibacterial, antifungal, etc. To understand the effects of AgNPs on the growth and development of the plants is crucial for the assessment of potential risk for the plants, animals, and human beings, as they are the important component of environment on which organisms depend for their food and other requirements. This review demonstrates the uptake, transportation, and deposition of AgNPs in plants and also their toxicity at morphological, physiological, and cellular levels. Apart from this, it also emphasizes on the tolerance mechanisms, which are adopted by plants to combat the detrimental effects of AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177

    Article  CAS  Google Scholar 

  • Abdelsalam NR, Abdel-Megeed A, Ali HM, Salem MZM, Al-Hayali MFA, Elshikh MS (2018) Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotoxicol Environ Saf 155:76–85

    Article  CAS  PubMed  Google Scholar 

  • Ahamed M, AlSaalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848

    Article  CAS  PubMed  Google Scholar 

  • Amooaghaie R, Tabatabaei F, Ahadi AM (2015) Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf 113:259–270

    Article  CAS  PubMed  Google Scholar 

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asanithi P, Chaiyakun S, Limsuwan P (2012) Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012:963609

    Article  CAS  Google Scholar 

  • Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: An overview. Sci World J 2014:641759

    Article  Google Scholar 

  • Bagherzadeh Homaee M, Ehsanpour AA (2016) Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L.) grown in vitro. Hortic Environ Biotechnol 57:544–553

    Article  CAS  Google Scholar 

  • Capaldi Arruda SC, Diniz Silva AL, Moretto Galazzi R, Antunes Azevedo R, Zezzi Arruda MA (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  CAS  Google Scholar 

  • Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K, Wallinder IO, Moller L (2013) Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9:970–982

    Article  CAS  PubMed  Google Scholar 

  • Cvjetko P, Zovko M, Å tefani’c PP, Biba R, Tkalec M, Domijan AM, Vrˇcek IV, Letofsky-Papst I, Å iki’c S, Balen B (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res Int 25:5590–5602

    Article  CAS  PubMed  Google Scholar 

  • Das R, Gang S, Nath SS (2011) Preparation and antibacterial activity of silver nanoparticles. J Biomater Nanobiotechnol 2:472–475

    Article  CAS  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC (2013) Impact of Ag nanoparticle exposure on p,p0-DDE bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environ Sci Technol 47:718–725

    Article  CAS  Google Scholar 

  • Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–4146

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Priscyla D, Marcato PD, Alves O, De Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Article  Google Scholar 

  • Ejaz M, Raja NI, Ahmad MS, Hussain M, Iqbal M (2018) Effect of silver nanoparticles and silver nitrate on growth of rice under biotic stress. IET Nanobiotechnol 12(7):927–932

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B 74:191–195

    Article  CAS  Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X, Berg RH, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nano 4:301–318

    Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. Biomed Res Int 2004:314–320

    Google Scholar 

  • Gross EL (1993) Plastocyanin: structure and function. Photosynth Res 37:103–116

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    Article  CAS  PubMed  Google Scholar 

  • He D, Jones AM, Garg S, Pham AN, Waite TD (2011) Silver nanoparticle–reactive oxygen species interactions: application of a charging-discharging model. J Phys Chem C 115:5461–5468

    Article  CAS  Google Scholar 

  • Hoque ME, Khosravi K, Newman K, Metcalfe CD (2012) Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. J Chromatogr A 1233:109–115

    Article  CAS  PubMed  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang H-S, Qiu X-N, Li G-B, Li W, Yin L-Y (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen 12:288–294

    Article  PubMed  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kaveh R, Li Y-S, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644

    Article  CAS  PubMed  Google Scholar 

  • Kittler S, Greulich C, Diendorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554

    Article  CAS  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    Article  CAS  PubMed  Google Scholar 

  • Lazareva A, Keller AA (2014) Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustain Chem Eng 2:1656–1665

    Article  CAS  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  CAS  PubMed  Google Scholar 

  • Li C-C, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou D-M (2017) Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 11:699–709

    Article  CAS  PubMed  Google Scholar 

  • Lin TH, Huang YL, Huang SF (1996) Lipid peroxidation in liver of rats administrated with methyl mercuric chloride. Biol Trace Elem Res 54:33–41

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar H (2014) Comparative assessment of the adverse effect of silver nanoparticles to Vigna radiata and Brassica campestris crop plants. Int J Eng Res Appl 4:118–124

    Google Scholar 

  • McTeer J, Dean AP, White KN, Pittman JK (2014) Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability. Nanotoxicology 8:305–316

    Article  CAS  PubMed  Google Scholar 

  • Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254

    PubMed  PubMed Central  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239

    Article  CAS  PubMed  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Montes A, Bisson MA, Gardella JA, Aga DS (2017) Uptake and transformations of engineered nanomaterials: critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana. Sci Total Environ 607–608:1497–1516

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Garrido I, Pérez S, Blasco J (2015) Toxicity of silver and gold nanoparticles on marine microalgae. Mar Environ Res 111:60–73

    Article  CAS  PubMed  Google Scholar 

  • Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Advances in selected plant physiology aspects. IntechOpen, London

    Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2014) Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Pollut Res 21:8858–8869

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956

    Article  CAS  Google Scholar 

  • Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM, Brestic M (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57(1):209–216

    Article  CAS  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Cham, pp 1–17

    Google Scholar 

  • Roldán MV, Pellegri N, de Sanctis O (2013) Electrochemical method for Ag-PEG nanoparticles synthesis. J Nanopart Res 2013:524150

    Google Scholar 

  • Ruotolo R, Maestri E, Pagano L, Marmiroli M, White JC, Marmiroli N (2018) Plant response to metal-containing engineered nanomaterials: an omics-based perspective. Environ Sci Technol 52:2451–2467

    Article  CAS  PubMed  Google Scholar 

  • Saha N, Dutta Gupta S (2017) Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J Hazard Mater 330:18–28

    Article  CAS  PubMed  Google Scholar 

  • Samberg ME, Loboa EG, Oldenburg SJ, Monteiro-Riviere NA (2012) Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine 7:1197–1209

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Mater Focus 5(3):195–201

    Article  CAS  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersiconesculentum). Ecotoxicol Environ Saf 93:60–67

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, Pratsinis SE (2011) Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J 170:547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speranza A, Crinelli R, Scoccianti V, Taddei AR, Iacobucci M, Bhattacharya P, Ke PC (2013) In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ Pollut 179:258–267

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  PubMed  Google Scholar 

  • Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017

    Article  CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Gurunathan S, Chung I-M (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapassp. rapa L.). Protoplasma 252:1031–1046

    Article  CAS  PubMed  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017a) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Tripathi A, Shweta Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK (2017b) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:07

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017c) Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma K, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Qiao X, Chen J (2007) Synthesis of silver nanoparticles—effects of concerned parameters in water/oil microemulsion. Mater Sci Eng B 142:1–15

    Article  CAS  Google Scholar 

  • Zou X, Li P, Huang Q, Zhang H (2016) The different response mechanisms of Wolffia globosa: light-induced silver nanoparticle toxicity. Aquat Toxicol 17:97–105

    Article  CAS  Google Scholar 

  • Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:90

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Pujari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapoor, D., Pujari, M. (2021). Impact of Silver Nanoparticles (AgNPs) on Plant Systems. In: Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Chauhan, D.K. (eds) Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-36740-4_10

Download citation

Publish with us

Policies and ethics