Skip to main content

The Independent Effects of Cooling Rate and Na Addition on Hydrogen Storage Properties in Hypo-eutectic Mg Alloys

  • Conference paper
  • First Online:
Magnesium Technology 2020

Abstract

The addition of trace concentrations of elements such as Na and Sr along with rapid cooling is well-established method for modification of the faceted eutectic Si in Al–Si. There have been some efforts to extend this strategy to Mg-based alloys. For example, it has been reported that trace Na addition to Mg–Ni alloys can also refine the eutectic Mg2Ni phase and facilitate functional property improvements such as hydrogen absorption kinetics. In this work, we have extended this strategy to a variety of other Mg-based alloys such as Mg–Ni and Mg–La alloys through the addition of trace elements and use of different cooling rates. The modification of the eutectic morphology in these alloys is discussed with regard to the Jackson parameters which were calculated using data from Thermo-Calc. The relationship between eutectic modification and hydrogen absorption kinetics in these alloys is investigated. The work has demonstrated, contrary to prior expectations, that microstructural refinement and hydrogen absorption kinetics are not necessarily correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakintuna, B., F. Lamari-Darkrim and M. Hirscher (2007). “Metal hydride materials for solid hydrogen storage: A review.” International Journal of Hydrogen Energy 32(9): 1121–1140.

    Google Scholar 

  2. Huot, J., E. Akiba and T. Takada (1995). “Mechanical alloying of MgNi compounds under hydrogen and inert atmosphere.” Journal of Alloys and Compounds 231(1): 815–819.

    Google Scholar 

  3. Huot, J., G. Liang, S. Boily, A. Van Neste and R. Schulz (1999). “Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride.” Journal of Alloys and Compounds 293–295: 495–500.

    Google Scholar 

  4. Doppiu, S., L. Schultz and O. Gutfleisch (2007). “In situ pressure and temperature monitoring during the conversion of Mg into MgH2 by high-pressure reactive ball milling.” Journal of Alloys and Compounds 427(1): 204–208.

    Google Scholar 

  5. Crivello, J. C., R. V. Denys, M. Dornheim, M. Felderhoff, D. M. Grant, J. Huot, T. R. Jensen, P. de Jongh, M. Latroche, G. S. Walker, C. J. Webb and V. A. Yartys (2016). “Mg-based compounds for hydrogen and energy storage.” Applied Physics A 122(2).

    Google Scholar 

  6. Liang, G., J. Huot, S. Boily, A. Van Neste and R. Schulz (1999). “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems.” Journal of Alloys and Compounds 292(1): 247–252.

    Google Scholar 

  7. Denis, A., E. Sellier, C. Aymonier and J. L. Bobet (2009). “Hydrogen sorption properties of magnesium particles decorated with metallic nanoparticles as catalyst.” Journal of Alloys and Compounds 476(1): 152–159.

    Google Scholar 

  8. Li, Z., X. Liu, L. Jiang and S. Wang (2007). “Characterization of Mg–20 wt% Ni–Y hydrogen storage composite prepared by reactive mechanical alloying.” International Journal of Hydrogen Energy 32(12): 1869–1874.

    Google Scholar 

  9. Kalinichenka, S., L. Röntzsch, T. Riedl, T. Weißgärber and B. Kieback (2011). “Hydrogen storage properties and microstructure of melt-spun Mg90Ni8RE2 (RE = Y, Nd, Gd).” International Journal of Hydrogen Energy 36(17): 10808–10815.

    Google Scholar 

  10. Barkhordarian, G., T. Klassen and R. Bormann (2003). “Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst.” Scripta Materialia 49(3): 213–217.

    Google Scholar 

  11. Polanski, M. and J. Bystrzycki (2009). “Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride.” Journal of Alloys and Compounds 486(1): 697–701.

    Google Scholar 

  12. Janot, R., L. Aymard, A. Rougier, G. A. Nazri and J. M. Tarascon (2003). “Enhanced hydrogen sorption capacities and kinetics of Mg2Ni alloys by ball-milling with carbon and Pd coating.” Journal of Materials Research 18(8): 1749–1752.

    Google Scholar 

  13. Takasaki, A., Y. Furuya and M. Katayama (2007). “Mechanical alloying of graphite and magnesium powders, and their hydrogenation.” Journal of Alloys and Compounds 446–447: 110-113.

    Google Scholar 

  14. Nogita, K., S. Ockert, J. Pierce, M. C. Greaves, C. M. Gourlay and A. K. Dahle (2009). “Engineering the Mg–Mg2Ni eutectic transformation to produce improved hydrogen storage alloys.” International Journal of Hydrogen Energy 34(18): 7686–7691.

    Google Scholar 

  15. Tran, X. Q., S. D. McDonald, Q. Gu, S. Matsumura and K. Nogita (2016). “Effect of trace Na additions on the hydrogen absorption kinetics of Mg2Ni.” Journal of Materials Research 31(09): 1316–1327.

    Google Scholar 

  16. Lu, S.-Z. and A. Hellawell (1987). “The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning.” Metallurgical Transactions A 18(10): 1721–1733.

    Google Scholar 

  17. Makhlouf, M. M. and H. V. Guthy (2001). “The aluminum–silicon eutectic reaction: mechanisms and crystallography.” Journal of Light Metals 1(4): 199–218.

    Google Scholar 

  18. Li, J. H., N. Wanderka, Z. Balogh, P. Stender, H. Kropf, M. Albu, Y. Tsunekawa, F. Hofer, G. Schmitz and P. Schumacher (2016). “Effects of trace elements (Y and Ca) on the eutectic Ge in Al–Ge based alloys.” Acta Materialia 111: 85–95.

    Google Scholar 

  19. Wu, X.-F., Y. Wang, K.-Y. Wang, R.-D. Zhao and F.-F. Wu (2018). “Enhanced mechanical properties of hypoeutectic Al-10Mg2Si cast alloys by Bi addition.” Journal of Alloys and Compounds 767: 163–172.

    Google Scholar 

  20. Wu, X.-F., K.-Y. Wang, F.-F. Wu, R.-D. Zhao, M.-H. Chen, J. Xiang, S.-N. Ma and Y. Zhang (2019). “Simultaneous grain refinement and eutectic Mg2Si modification in hypoeutectic Al-11Mg2Si alloys by Sc addition.” Journal of Alloys and Compounds 791: 402–410.

    Google Scholar 

  21. Emamy, M., R. Khorshidi and A. H. Raouf (2011). “The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite.” Materials Science and Engineering: A 528(13): 4337–4342.

    Google Scholar 

  22. Guo, E. J., B. X. Ma and L. P. Wang (2008). “Modification of Mg2Si morphology in Mg–Si alloys with Bi.” Journal of Materials Processing Technology 206(1): 161–166.

    Google Scholar 

  23. Ye, L., J. Hu, C. Tang, X. Zhang, Y. Deng, Z. Liu and Z. Zhou (2013). “Modification of Mg2Si in Mg–Si alloys with gadolinium.” Materials Characterization 79: 1–6.

    Google Scholar 

  24. Nogita, K. and A. K. Dahle (2006). Magnesium alloys for hydrogen storage. International patent. WO/2006/060851. 15 June 2006.

    Google Scholar 

  25. Nayeb-Hashemi, A. A. and J. B. Clark (1985). “The Mg–Ni (Magnesium-Nickel) system.” Bulletin of Alloy Phase Diagrams 6(3): 238–244.

    Google Scholar 

  26. Nayeb-Hashemi, A. A. and J. B. Clark (1988). “The La–Mg (Lanthanum-Magnesium) system.” Journal of Phase Equilibria 9(2): 172–178.

    Google Scholar 

  27. Guo, C., Z. Du and C. Li (2007). “A thermodynamic description of the Gd–Mg–Y system.” Calphad 31(1): 75–88.

    Google Scholar 

  28. Nayeb-Hashemi, A. A. and J. B. Clark (1984). “The Cu-Mg (Copper-Magnesium) system.” Bulletin of Alloy Phase Diagrams 5(1): 36–43.

    Google Scholar 

  29. Okamoto, H. (2007). “Mg-Si (Magnesium-Silicon).” Journal of Phase Equilibria and Diffusion 28(2): 229.

    Google Scholar 

  30. Kim, M., Y. Ali, S. D. McDonald, T. B. Abbott and K. Nogita (2019). Effect of Na addition and cooling rate on activation of Mg-Ni alloys for hydrogen storage 2019 International Conference on Nanospace Materials. Australia, (To be submitted).

    Google Scholar 

  31. Kurz, W. and D. J. Fisher (1992). Fundamentals of Solidification, Trans Tech Publications Ltd.

    Google Scholar 

  32. Tran, X. Q., S. D. McDonald, Q. Gu, X. F. Tan and K. Nogita (2017). “Effect of trace Na additions on the hydriding kinetics of hypo-eutectic Mg–Ni alloys.” International Journal of Hydrogen Energy 42(10): 6851–6861.

    Google Scholar 

  33. McDonald, S. D., K. Nogita and A. K. Dahle (2004). “Eutectic nucleation in Al–Si alloys.” Acta Materialia 52(14): 4273–4280.

    Google Scholar 

  34. Yang, T., Z. Yuan, W. Bu, Z. Jia, Y. Qi and Y. Zhang (2016). “Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg88Y12 binary alloy.” International Journal of Hydrogen Energy 41(4): 2689–2699.

    Google Scholar 

  35. Yang, T., Z. Yuan, W. Bu, Z. Jia, Y. Qi and Y. Zhang (2016). “Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy.” Materials & Design 93: 46–52.

    Google Scholar 

  36. Čermák, J. and L. Král (2008). “Hydrogen diffusion in Mg–H and Mg–Ni–H alloys.” Acta Materialia 56(12): 2677–2686.

    Google Scholar 

  37. Kim, J. and C. C. Tasan (2019). “Microstructural and micro-mechanical characterization during hydrogen charging: An in situ scanning electron microscopy study.” International Journal of Hydrogen Energy 44(12): 6333–6343.

    Google Scholar 

  38. Danaie, M., S. X. Tao, P. Kalisvaart and D. Mitlin (2010). “Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powder.” Acta Materialia 58(8): 3162–3172.

    Google Scholar 

  39. Deutges, M., H. P. Barth, Y. Chen, C. Borchers and R. Kirchheim (2015). “Hydrogen diffusivities as a measure of relative dislocation densities in palladium and increase of the density by plastic deformation in the presence of dissolved hydrogen.” Acta Materialia 82: 266–274.

    Google Scholar 

  40. Hongo, T., K. Edalati, M. Arita, J. Matsuda, E. Akiba and Z. Horita (2015). “Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion.” Acta Materialia 92: 46–54.

    Google Scholar 

Download references

Acknowledgements

This work supported by funding from the Australian Research Council Linkage Project LP160100690 and Australian Government Research Training Program (RTP) Scholarship that have contributed to this research. The authors acknowledge Dr. Christopher Gourlay (Faculty of Engineering, Department of Materials, Imperial College London) for calculation of Jackson Parameter and the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjin Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, M., Ali, Y., McDonald, S.D., Abbott, T.B., Nogita, K. (2020). The Independent Effects of Cooling Rate and Na Addition on Hydrogen Storage Properties in Hypo-eutectic Mg Alloys. In: Jordon, J., Miller, V., Joshi, V., Neelameggham, N. (eds) Magnesium Technology 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36647-6_43

Download citation

Publish with us

Policies and ethics