Skip to main content

Search for Approaches to Supercomputer Quantum-Chemical Docking

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1129))

Included in the following conference series:

Abstract

The quasi-docking procedure with a combination of the classical MMFF94 force field and the PM7 quantum-chemical semiempirical method is applied for docking ligands into proteins with which they are co-crystallized. Main peculiarities of the test set of protein-ligand complexes are: a high resolution of the structures obtained from Protein Data Bank, no missed residues or atoms in the active sites of the proteins and the availability of experimentally measured protein-ligand binding free energies including separate contributions of the enthalpy and entropy terms. The goal of this work is to determine positioning accuracy of the quasi-docking by a comparison of best docked ligand poses with the respective ligand poses in the crystallized protein-ligand complexes, to estimate values of the protein-ligand binding enthalpy for the best ligand poses and to compare these values with the measured ones. The best ligand pose corresponds to the global energy minimum of the protein-ligand complex calculated with PM7 and with the COSMO continuum solvent model either in the old parameterization, COSMO, or in the recent one, COSMO2, in the quasi-docking procedure. It is found that the docking positioning accuracy is better in the case of PM7 with COSMO energy calculations than with COSMO2 calculations. The correlation between values of the calculated and experimentally measured binding enthalpy is also better, R = 0.74, for the PM7+COSMO energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sulimov, V.B., Sulimov, A.V.: Docking: molecular modeling for drug discovery. AINTELL, Moscow (2017). (in Russian)

    Google Scholar 

  2. Sulimov, V.B., Kutov, D.C., Sulimov, A.V.: Advances in Docking. Curr. Med. Chem. 26, 1–25 (2019). https://doi.org/10.2174/0929867325666180904115000

    Article  Google Scholar 

  3. Sulimov, A.V., Kutov, D.C., Katkova, E.V., Sulimov, V.B.: Combined docking with classical force field and quantum chemical semiempirical method PM7. Adv, Bioinform. 2017 (2017). Article ID: 7167691. https://doi.org/10.1155/2017/7167691

    Article  Google Scholar 

  4. Sulimov, A.V., Kutov, D.C., Katkova, E.V., Ilin, I.S., Sulimov, V.B.: New generation of docking programs: supercomputer validation of force fields and quantum-chemical methods for docking. J. Mol. Graph. Model. 78, 139–147 (2017). https://doi.org/10.1016/j.jmgm.2017.10.007

    Article  Google Scholar 

  5. Stewart, J.J.: Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 19(1), 1–32 (2013). https://doi.org/10.1007/s00894-012-1667-x

    Article  Google Scholar 

  6. Klamt, A., Schuurmann, G.: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2(5), 799–805 (1993). https://doi.org/10.1039/P29930000799

    Article  Google Scholar 

  7. Oferkin, I.V., et al.: Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima. Adv. Bioinform. 2015 (2015). Article ID: 126858. https://doi.org/10.1155/2015/126858

    Article  Google Scholar 

  8. Oferkin, I.V., Zheltkov, D.A., Tyrtyshnikov, E.E., Sulimov, A.V., Kutov, D.C., Sulimov, V.B.: Evaluation Of The Docking Algorithm Based On Tensor Train Global Optimization. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 8(4), 83–99 (2015)

    MATH  Google Scholar 

  9. Sulimov, A.V., et al.: Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms. Comput. Struct. Biotechnol. J. 15, 275–285 (2017). https://doi.org/10.1016/j.csbj.2017.02.004

    Article  Google Scholar 

  10. Sulimov, A., Kutov, D., Sulimov, V.: Parallel supercomputer docking program of the new generation: finding low energy minima spectrum. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 314–330. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05807-4_27

    Chapter  Google Scholar 

  11. Kutov, D.C., Sulimov, A.V., Sulimov, V.B.: Supercomputer docking: investigation of low energy minima of protein-ligand complexes. Supercomput. Front. Innov. 5(3), 134–137 (2018)

    Google Scholar 

  12. Stewart, J.J.P.: MOPAC2016: Stewart computational chemistry, colorado springs, CO, USA (2016). http://OpenMOPAC.net

  13. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  MathSciNet  Google Scholar 

  14. Stewart, J.J.P.: Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. Int. J. Quantum Chem. 58, 133–146 (1996)

    Article  Google Scholar 

  15. Rezac, J., Hobza, P.: Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 8(1), 141–151 (2012). https://doi.org/10.1021/ct200751e

    Article  Google Scholar 

  16. Řezáč, J., Hobza, P.: A halogen-bonding correction for the semiempirical PM6 method. Chem. Phys. Lett. 506(4), 286–289 (2011). https://doi.org/10.1016/j.cplett.2011.03.009

    Article  Google Scholar 

  17. Hostaš, J., Řezáč, J., Hobza, P.: On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions. Chem. Phys. Lett. 568–569(Supplement C), 161–166 (2013). https://doi.org/10.1016/j.cplett.2013.02.069

    Article  Google Scholar 

  18. Kříž, K., Řezáč, J.: Reparametrization of the COSMO solvent model for semiempirical methods PM6 and PM7. J. Chem. Inf. Model. 59(1), 229–235 (2019). https://doi.org/10.1021/acs.jcim.8b00681

    Article  Google Scholar 

  19. Chen, W., Gilson, M.K., Webb, S.P., Potter, M.J.: Modeling protein-ligand binding by mining minima. J. Chem. Theory Comput. 6(11), 3540–3557 (2010)

    Article  Google Scholar 

  20. Sulimov, A.V., Kutov, D.C., Oferkin, I.V., Katkova, E.V., Sulimov, V.B.: Application of the docking program SOL for CSAR benchmark. J. Chem. Inf. Model. 53(8), 1946–1956 (2013). https://doi.org/10.1021/ci400094h

    Article  Google Scholar 

  21. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 17 (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  Google Scholar 

  22. Basilevsky, M.V., Leontyev, I.V., Luschekina, S.V., Kondakova, O.A., Sulimov, V.B.: Computation of hydration free energies of organic solutes with an implicit water model. J. Comput. Chem. 27(5), 552–570 (2006)

    Article  Google Scholar 

  23. Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “Lomonosov”: supercomputing at Moscow State University. In: Contemporary High Performance Computing: From Petascale Toward Exascale, Boca Raton, United States, pp. 283–307 (2013)

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Russian Science Foundation, Agreement no. 15-11-00025-П. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University, including the Lomonosov supercomputer [23].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sulimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sulimov, A., Kutov, D., Gribkova, A., Ilin, I., Tashchilova, A., Sulimov, V. (2019). Search for Approaches to Supercomputer Quantum-Chemical Docking. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2019. Communications in Computer and Information Science, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-36592-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36592-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36591-2

  • Online ISBN: 978-3-030-36592-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics