Skip to main content

The Influence of Polarisation on the Wetting of Graphite in Cryolite-Alumina Melts

  • Conference paper
  • First Online:
Book cover Light Metals 2020

Abstract

The wetting properties of graphite were measured with the immersion/emersion technique in a high temperature alumina reduction cell. The wetting was measured at untreated, polarised and anode effect polarised samples. Most measurements were made in melts with 1 wt% alumina, although some measurements were performed at higher alumina content. As long as passivation (i.e. anode effect) was not initiated polarisation improved the wettability significantly and the wetting increased with increased polarisation. Anodes polarised to anode effect exhibited consistently very poor wetting. Most of the decrease in wetting occurred during the first few seconds of the anode effect, with full de-wetting from about 60 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.C. Mills, E.D. Hondros, Z. Li, Journal of Materials Science 40(9–10), 2403 (2005). https://doi.org/10.1007/s10853-005-1966-z

  2. A. Solheim, H. Gudbrandsen, A.M. Martinez, K.E. Einarsrud, I. Eick, in Light Metals 2015 (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2015), pp. 671–676. https://doi.org/10.1002/9781119093435.ch113

  3. A.M. Martinez, O. Paulsen, A. Solheim, H. Gudbrandsen, I. Eick, in Light Metals 2015 (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2015), pp. 665–670. https://doi.org/10.1002/9781119093435.ch112

  4. J.B. Metson, R.G. Haverkamp, M.M. Hyland, J. Chen, in Light Metals 2002 (The Minerals, Metals and Materials Society, Warrendale, PA, USA, 2002), pp. 239–244

    Google Scholar 

  5. H. Vogt, Journal of Applied Electrochemistry 29(7), 779 (1999). https://doi.org/10.1023/A:1003575232103

  6. E. Laé, V. Sahajwalla, B. Welch, M. Skyllas-Kazacos, Journal of Applied Electrochemistry 35(2), 199 (2005). https://doi.org/10.1007/s10800-004-6201-0

  7. K. Grjotheim, C. Krohn, M. Malinovský, K. Matiašovský, J. Thonstad, Aluminium Electrolysis: Fundamentals of the Hall-Héroult Process, 2nd edn. (Aluminium-Verlag, Düsseldorf, 1982)

    Google Scholar 

  8. K. Matiašovský, M. Paučírová, M. Malinovský, Chemické Zvesti 17, 181 (1963). http://www.chemicalpapers.com/file_access.php?file=173a181.pdf

  9. L. Wasilewski, L. Piszczek, Zeszyty Naukowe Politechniki Ślaskiej 24(106), 51 (1964). http://delibra.bg.polsl.pl/Content/31768/BCPS_35087_1964_Wplyw-dzialania-sil-.pdf

  10. Y. Yuan, T.R. Lee, in Surface Science Techniques, Springer Series in Surface Sciences, vol. 51, ed. by G. Bracco, B. Holst (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 3–34. https://doi.org/10.1007/978-3-642-34243-1_1

  11. T. Young, Philosophical Transactions of the Royal Society of London 95(0), 65 (1805). https://doi.org/10.1098/rstl.1805.0005

  12. R. Finn, J. McCuan, H.C. Wente, Journal of Mathematical Fluid Mechanics 14(3), 445 (2012). https://doi.org/10.1007/s00021-011-0079-5

  13. V.M. Starov, M.G. Velarde, C.J. Radke, in Wetting and Spreading Dynamics (CRC Press, 2007), pp. 1–30. https://doi.org/10.1201/9781420016178.ch1

  14. D. Teeters, J.F. Wilson, M.A. Andersen, D.C. Thomas, Journal of Colloid And Interface Science 126(2), 641 (1988). https://doi.org/10.1016/0021-9797(88)90167-1

  15. J.A. Kleingartner, S. Srinivasan, J.M. Mabry, R.E. Cohen, G.H. McKinley, Langmuir 29(44), 13396 (2013). https://doi.org/10.1021/la4022678

  16. F.Y. Lewandowski, D. Dupuis, Journal of Non-Newtonian Fluid Mechanics 52(2), 233 (1994). https://doi.org/10.1016/0377-0257(94)80053-7

  17. L. Landau, B. Levich, Acta Physicochimica U.R.S.S. 17(1–2), 42 (1942)

    Google Scholar 

  18. W. Brockner, K. Tørklep, H.A. Øye, Berichte der Bunsengesellschaft für physikalische Chemie 83(1), 12 (1979). https://doi.org/10.1002/bbpc.19790830103

  19. R. Fernandez, T. Østvold, Acta Chemica Scandinavica 43, 151 (1989). https://doi.org/10.3891/acta.chem.scand.43-0151

  20. H. Gudbrandsen, A. Solheim, A.M. Martinez, Wetting Measuring Device. Tech. rep., SINTEF, Trondheim, Norway (2014)

    Google Scholar 

  21. Z. Zhao, Z. Wang, B. Gao, Y. Feng, Z. Shi, X. Hu, in Light Metals 2015 (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2015), pp. 801–806. https://doi.org/10.1002/9781119093435.ch135

  22. J.O. Bockris, A.K.N. Reddy, Modern Electrochemistry: An Introduction to Interdisciplinary Area, Volume 2 (Plenum Press, New York, 1970)

    Google Scholar 

  23. S. Jarek, J. Thonstad, Journal of Applied Electrochemistry 17(6), 1203 (1987). https://doi.org/10.1007/BF01023604

  24. A. Kisza, J. Thonstad, T. Eidet, Journal of The Electrochemical Society 143(6), 1840 (1996). https://doi.org/10.1149/1.1836913

  25. W. Gebarowski, C. Sommerseth, A.P. Ratvik, E. Sandnes, L.P. Lossius, H. Linga, A.M. Svensson, in Light Metals 2016 (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2016), pp. 883–888. https://doi.org/10.1002/9781119274780.ch149

  26. Z.X. Qiu, Q.B. Wei, K.T. You, in 7th International Leichtmetalltagung (Leoben-Wien, 1981), pp. 256–257

    Google Scholar 

  27. I.A. Eidsvaag, The Influence of Polarization on the Wetting of Anodes in the Hall-Héroult Process. Master’s thesis, Norwegian University of Sceince and Technology (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Espen Sandnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Åsheim, H., Eidsvaag, I.A., Solheim, A., Gudbrandsen, H., Haarberg, G.M., Sandnes, E. (2020). The Influence of Polarisation on the Wetting of Graphite in Cryolite-Alumina Melts. In: Tomsett, A. (eds) Light Metals 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36408-3_83

Download citation

Publish with us

Policies and ethics