Skip to main content

Carbon-Fiber Composites: Development, Structure, Properties, and Applications

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Carbon fibers are stiff and possess high strength comparable with that of high strength steel. They are embedded in a ductile-low strength material which binds them together to form a carbon fiber composite. Improved properties are developed from a blend of carbon fibers and matrix material, which are not achievable from each component used individually. Carbon fiber composites (CFCs) are light and strong and are replacing existing heavy alloys or metals across various engineering sectors. Non-uniform properties of CFC from a direction to another remain a challenge. Addressing anisotropy in CFC gives a premise for varying orientation of carbon fibers that gives rise to different carbon fiber plies which are tape, weaving, and knitting plies. Carbon fiber is sourced from conventional fossil resources including coal, natural gas, and coal which are not renewable, and the exploitation of these resources poses threat to ecology and human comfort. Recent emerging waste-to-wealth technology reveals extraction of crop fiber from remnants of agricultural creations which are carbon based and are possible replacement for carbon fiber in composite fabrications. Therefore, this chapter covers an overview of CFC, development, structure, and applications. Introduction of plant remnants for replacing carbon-fiber in composite fabrication is part of this discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bello SA, Agunsoye JO, Hassan SB, Zebase Kana MG, Raheem IA (2015) Epoxy resin based composites, mechanical and tribological properties: a review. Tribol Ind 37(4):500–524

    Google Scholar 

  2. Bello SA, Raheem IA, Raji NK (2017) Study of tensile properties, fractography and morphology of aluminium (1xxx)/coconut shell micro particle composites. J King Saud University Eng Sci 29:269–277. https://doi.org/10.1016/j.jksues.2015.10.001

    Article  Google Scholar 

  3. Jan WVdW, Martin VB, Stijn H (2012) Future of automotive design & materials trends and developments in design and materials: automatic technology centre, acemr.eu

    Google Scholar 

  4. Iernutan RA, Babota F, Istoan R (2019) Carbon fibre reinforced aluminium mesh composite materials. Proc Manuf 32:901–907. https://doi.org/10.1016/j.promfg.2019.02.301

    Article  Google Scholar 

  5. Chen Y (2019) Applicable scope of carbon fiber composite core aluminum conductor, pp 197–223. https://doi.org/10.1016/b978-0-12-815611-7.00007-7

  6. Bagherpour S (2012) Fibre reinforced polyester composites. https://doi.org/10.5772/48697

  7. Hazer S, Coban M, Aytac A (2018) A study on carbon fiber reinforced poly(lactic acid)/polycarbonate composites. J Appl Polym Sci 135(48):46881. https://doi.org/10.1002/app.46881

    Article  CAS  Google Scholar 

  8. Pan Y-J, Lin Z-I, Lou C-W, Huang C-L, Lee M-C, Liao J-M, Lin J-H (2017) Polylactic acid/carbon fiber composites: effects of polylactic acid-g-maleic anhydride on mechanical properties, thermal behavior, surface compatibility, and electrical characteristics. J Compos Mater 52(3):405–416. https://doi.org/10.1177/0021998317708020

    Article  CAS  Google Scholar 

  9. Harper LT, Burn DT, Johnson MS, Warrior NA (2017) Long discontinuous carbon fibre/polypropylene composites for high volume structural applications. J Compos Mater 52(9):1155–1170. https://doi.org/10.1177/0021998317722204

    Article  CAS  Google Scholar 

  10. Boyer RR, Cotton JD, Mohaghegh M, Schafrik RE (2015) Materials considerations for aerospace applications. MRS Bull 40(12):1055–1066. https://doi.org/10.1557/mrs.2015.278

    Article  Google Scholar 

  11. Rowe J (2012) 1– Introduction: advanced materials and vehicle lightweighting. In: Rowe J (ed) Advanced materials in automotive engineering. Woodhead Publishing, Oxford, pp 1–4

    Chapter  Google Scholar 

  12. Jortner J (2000) 6.03 – Applications of carbon/carbon composites. In: Kelly A, Zweben C (eds) Comprehensive composite materials. Pergamon, Oxford, pp 29–45

    Chapter  Google Scholar 

  13. Cai R, Jin T (2018) The effect of microstructure of unidirectional fibre-reinforced composites on mechanical properties under transverse loading: a review. J Reinf Plast Compos 37(22):1360–1377. https://doi.org/10.1177/0731684418796308

    Article  CAS  Google Scholar 

  14. Duleba B, Dulebová Ľ, Spišák E (2014) Simulation and evaluation of carbon/epoxy composite systems using FEM and tensile test. Proc Eng 96:70–74. https://doi.org/10.1016/j.proeng.2014.12.099

    Article  CAS  Google Scholar 

  15. Chung DDL (2017) Introduction to carbon composites, pp 88–160. https://doi.org/10.1016/b978-0-12-804459-9.00002-6

  16. Peters ST (1998) Handbook of composites, 2nd edn. Springer Science+Business Media, Dordrecht

    Book  Google Scholar 

  17. Bhatt P, Goe A (2017) Carbon fibres: production, properties and potential use. Mater Sci Res India 14(1):52–57. https://doi.org/10.13005/msri/140109

    Article  CAS  Google Scholar 

  18. Akonda MH, Lawrence CA, Weager BM (2012) Recycled carbon fibre-reinforced polypropylene thermoplastic composites. Compos A: Appl Sci Manuf 43(1):79–86. https://doi.org/10.1016/j.compositesa.2011.09.014

    Article  CAS  Google Scholar 

  19. Bello SA, Agunsoye JO, Adebisi JA, Kolawole FO, Suleiman BH (2016) Physical properties of coconut shell nanoparticles. Kathmandu Univ J Sci Eng Technol 12(1):63–79

    Article  Google Scholar 

  20. Bello SA (2019) Agglomerates within ball-milled lignocellulosic particles using minimum crystal sizes. Unilag J Med Sci Technol 7(1):15–40

    Google Scholar 

  21. Gabr MH, Okumura W, Ueda H, Kuriyama W, Uzawa K, Kimpara I (2015) Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos Part B 69:94–100. https://doi.org/10.1016/j.compositesb.2014.09.033

    Article  CAS  Google Scholar 

  22. Khan SM, Gull N, Munawar MA, Islam A, Zia S, Shafiq M, Sabir A, Awais SM, Butt MA, Butt MTZ, Jamil T (2016) 2D carbon fiber reinforced high density polyethylene multi-layered laminated composite panels: structural, mechanical, thermal, and morphological profile. J Mater Sci Technol 32(10):1077–1082. https://doi.org/10.1016/j.jmst.2016.06.011

    Article  CAS  Google Scholar 

  23. Büyükkaya K, Demirer H (2019) Examining the mechanical and thermomechanical properties of polymethylmethacrylate composites reinforced with nettle fibres. Arab J Sci Eng 45(2):665–674. https://doi.org/10.1007/s13369-019-04136-7

    Article  CAS  Google Scholar 

  24. Wikipedia C (2020) Polypropylene. https://en.wikipedia.org/w/index.php?title=Polypropylene&oldid=937308417

  25. Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31(10):4927–4932. https://doi.org/10.1016/j.matdes.2010.05.021

    Article  CAS  Google Scholar 

  26. Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16. https://doi.org/10.1155/2015/950567

    Article  Google Scholar 

  27. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264. https://doi.org/10.1016/s0266-3538(03)00096-4

    Article  CAS  Google Scholar 

  28. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  29. Das R (2018) Eco-friendly lubricants for tribological application, pp 1–18. https://doi.org/10.1007/978-3-319-48281-1_95-1

  30. Wikipedia C (2020) Acrylonitrile. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Acrylonitrile&oldid=938245296

  31. Wikipedia C (2020) Adansonia Digitata. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Adansonia_digitata&oldid=938496784

  32. Munyebvu F, Mapaure I, Kwembeya EG (2018) Abundance, structure and uses of baobab (Adansonia digitata L.) populations in Omusati Region, Namibia. S Afr J Bot 119:112–118. https://doi.org/10.1016/j.sajb.2018.08.020

    Article  Google Scholar 

  33. Sopeyin AO, Ajayi GO (2016) Pharmacognostic study of Parquetina nigrescens(Afzel.) Bullock. Int J Pharmacognosy Phytochem Res 8(2):321–326

    Google Scholar 

  34. Kayode OT, Yakubu MT (2017) Parquetina nigrescens leaves: chemical profile and influence on the physical and biochemical indices of sexual activity of male Wistar rats. J Integr Med 15(1):64–76. https://doi.org/10.1016/s2095-4964(17)60318-2

    Article  Google Scholar 

  35. Odukoya JO, Odukoya JO, Oshodi AA (2018) Evaluation of the nutritional qualities of the leaves of Parquetina nigrescens, Launaea taraxacifolia and Solanum nigrum. Eur J Pure Appl Chem 5(1):18–31

    Google Scholar 

  36. Owolabi MS, Lawal OA, Hauser RM, Setzer WN (2014) The volatile constituents of Parquetina nigrescens from southwestern Nigeria. Nat Prod Commun 9(6):1934578X1400900634. https://doi.org/10.1177/1934578X1400900634

    Article  Google Scholar 

  37. Saba AB, Oyagbemi A, Azeez O (2010) Antidiabetic and haematinic effects of Parquetina Nigrescens onalloxan induced type-1 diabetes and normocytic normochromicanaemia in Wistar rats. Afr Health Sci 10(3):276–283

    CAS  Google Scholar 

  38. Oyelowo O, Fabiyi O, Jimoh O, Owoyele B (2012) Aphrodisiac and male sexual characteristics in albino rats treated with the aqueous extract of Parquetina Nigrescens root. Niger J Nat Prod Med 16(1):18–25

    Google Scholar 

  39. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    Article  CAS  Google Scholar 

  40. Zhang W, Zhang Z, Zhang Y (2011) The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 6(1):555. https://doi.org/10.1186/1556-276X-6-555

    Article  Google Scholar 

  41. Fekete JR, Hall JN (2017) Design of auto body, pp 1–18. https://doi.org/10.1016/b978-0-08-100638-2.00001-8

  42. Palanikumar K (2012) Analyzing surface quality in machined composites, pp 154–182. https://doi.org/10.1533/9780857095145.1.154

  43. Krenkel W (2005) Carbon fibre reinforced silicon carbide composites (C/SiC, C/C-SiC). In: Bansal NP (ed) Handbook of ceramic composites. Springer US, Boston, pp 117–148

    Chapter  Google Scholar 

  44. Jia Y, Li K, Xue L, Ren J, Zhang S, Zhang X (2015) Microstructure and mechanical properties of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites. Mater Des 86:55–60. https://doi.org/10.1016/j.matdes.2015.07.018

    Article  CAS  Google Scholar 

  45. Fan X, Yin X (2014) Microstructure and properties of carbon fiber reinforced SiC matrix composites containing Ti3SiC2. Adv Eng Mater 16(6):670–683. https://doi.org/10.1002/adem.201400081

    Article  CAS  Google Scholar 

  46. Hufenbach W, Gude M, Czulak A, Śleziona J, Dolata-Grosz A, Dyzia M (2009) Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods. J Achiev Mater Manuf Eng 35(2):177–185

    Google Scholar 

  47. Baker AA, Allery MBP, Harris SJ (1969) The fabrication of fibre-reinforced metals by filament-winding and electrodeposition: an evaluation of some electroplating solutions. J Mater Sci 4(3):242–251. https://doi.org/10.1007/BF00549924

    Article  CAS  Google Scholar 

  48. Patankar SN, Gopinathan V, Ramakrishnan P (1991) Studies on carbon fibre reinforced aluminium composite processed using pre-treated carbon fibres. J Mater Sci 26(15):4196–4202. https://doi.org/10.1007/BF02402968

    Article  CAS  Google Scholar 

  49. Amateau MF (2016) Progress in the development of graphite- aluminum composites using liquid infiltration technology. J Compos Mater 10(4):279–296. https://doi.org/10.1177/002199837601000402

    Article  Google Scholar 

  50. Jackson PW, Braddick DM, Walker PJ (1972) Tensile and flexural properties of carbon fibre-aluminium matrix composites. Fibre Sci Technol 5(3):219–236. https://doi.org/10.1016/0015-0568(72)90017-6

    Article  CAS  Google Scholar 

  51. Ogawa F, Masuda C, Fujii H (2017) In situ chemical vapor deposition of metals on vapor-grown carbon fibers and fabrication of aluminum-matrix composites reinforced by coated fibers. J Mater Sci 53(7):5036–5050. https://doi.org/10.1007/s10853-017-1921-9

    Article  CAS  Google Scholar 

  52. Bello SA, Agunsoye JO, Adebisi JA, Kolawole FO, Raji NK, Hassan SB (2018) Quasi crystal Al (1xxx)/carbonised coconut shell nanoparticles: synthesis and characterisation. MRS Adv 3(42–43):2559–2571. https://doi.org/10.1557/adv.2018.369

    Article  CAS  Google Scholar 

  53. Hassan SB, Agunsoye JO, Bello SA (2015) Ball milling synthesis of Al (1050) particles: morphological study and particle size determination. Ind Eng Lett 5(11):22–27

    Google Scholar 

  54. Bello SA (2020) Fracture toughness of reinforced epoxy aluminum composite. Compos Commun 17:5–13. https://doi.org/10.1016/j.coco.2019.11.006

    Article  Google Scholar 

  55. Bello SA, Agunsoye JO, Adebisi JA, Adeyemo RG, Hassan SB (2020) Optimization of tensile properties of epoxy aluminum particulate composites using regression models. J King Saud Univ Sci 32(1):402–411. https://doi.org/10.1016/j.jksus.2018.06.002

    Article  Google Scholar 

  56. Reihanian M, Dashtbozorg M, Lari Baghal SM (2019) Fabrication of glass/carbon fiber-reinforced Al-based composites through deformation bonding. J Compos Mater 53(18):2531–2543. https://doi.org/10.1177/0021998319833004

    Article  CAS  Google Scholar 

  57. Yao JJ, Chu D, Han YQ, Ben LH, Wu CJ (2014) Continuous carbon fiber reinforced aluminum matrix composites – a review. Adv Mater Res 850–851:173–176. https://doi.org/10.4028/www.scientific.net/AMR.850-851.173

    Article  CAS  Google Scholar 

  58. Matsunaga T, Matsuda K, Hatayama T, Shinozaki K, Yoshida M (2007) Fabrication of continuous carbon fiber-reinforced aluminum–magnesium alloy composite wires using ultrasonic infiltration method. Compos A: Appl Sci Manuf 38(8):1902–1911. https://doi.org/10.1016/j.compositesa.2007.03.007

    Article  CAS  Google Scholar 

  59. Pan J, Yang DM, Wan H, Yin XF (1995) Application of ultrasonic infiltration in metal matrix composites. Key Eng Mater 104-107:275–282. https://doi.org/10.4028/www.scientific.net/KEM.104-107.275

    Article  CAS  Google Scholar 

  60. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers (Basel) 11(10). https://doi.org/10.3390/polym11101667

  61. Cui YQ, Yin ZW (2018) Carbon-fibre-reinforced modified cyanate ester winding composites and their thermomechanical properties. High Perform Polym 31(2):154–167. https://doi.org/10.1177/0954008317753526

    Article  CAS  Google Scholar 

  62. Liu F, Deng S, Zhang J (2017) Mechanical properties of epoxy and its carbon fiber composites modified by nanoparticles. J Nanomater 2017:1–9. https://doi.org/10.1155/2017/8146248

    Article  CAS  Google Scholar 

  63. Li Y, Zhang H, Huang Z, Bilotti E, Peijs T (2017) Graphite nanoplatelet modified epoxy resin for carbon fibre reinforced plastics with enhanced properties. J Nanomater 2017:1–10. https://doi.org/10.1155/2017/5194872

    Article  CAS  Google Scholar 

  64. Akonda MH, Stefanova M, Potluri P, Shah DU (2016) Mechanical properties of recycled carbon fibre/polyester thermoplastic tape composites. J Compos Mater 51(18):2655–2663. https://doi.org/10.1177/0021998316672091

    Article  CAS  Google Scholar 

  65. Badrinarayanan P, Rogalski MK, Kessler MR (2012) Carbon fiber-reinforced cyanate ester/nano-ZrW2O8 composites with tailored thermal expansion. ACS Appl Mater Interfaces 4(2):510–517. https://doi.org/10.1021/am201165q

    Article  CAS  Google Scholar 

  66. Toldy A, Niedermann P, Szebenyi G, Szolnoki B (2016) Mechanical properties of reactively flame retarded cyanate ester/epoxy resin blends and their carbon fibre reinforced composites. Express Polym Lett 10(12):1016–1025. https://doi.org/10.3144/expresspolymlett.2016.94

    Article  CAS  Google Scholar 

  67. He BL, Yu YX, Li L (2013) Preparation and tensile properties of carbon fiber reinforced polyethylene resin composite. Adv Mater Res 791–793:498–501. https://doi.org/10.4028/www.scientific.net/AMR.791-793.498

    Article  CAS  Google Scholar 

  68. Arib RMN, Sapuan SM, Ahmad MMHM, Paridah MT, Zaman HMDK (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27(5):391–396. https://doi.org/10.1016/j.matdes.2004.11.009

    Article  CAS  Google Scholar 

  69. Das S, Rahman M, Hasan M (2018) Physico-mechanical properties of pineapple leaf and banana fiber reinforced hybrid polypropylene composites: effect of fiber ratio and sodium hydroxide treatment. IOP Conf Ser Mater Sci Eng 438:012027. https://doi.org/10.1088/1757-899x/438/1/012027

    Article  CAS  Google Scholar 

  70. Chin-Hsing C, Kung-Chin L (2006) Pultruded hybrid fibre (glass/carbon) reinforced unsaturated polyester composites: mechanical and thermal properties. Polym Polym Compos 14(2):155–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefiu Adekunle Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bello, S.A. (2021). Carbon-Fiber Composites: Development, Structure, Properties, and Applications. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_86

Download citation

Publish with us

Policies and ethics