Skip to main content

Nanopesticides, Nanoherbicides, and Nanofertilizers: The Greener Aspects of Agrochemical Synthesis Using Nanotools and Nanoprocesses Toward Sustainable Agriculture

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Nanotechnology monitors the leading processes for agricultural control because of miniature dimension of nanoparticles. Enormous potential benefits including agricultural inputs reduction, food quality enhancement, and nanoscale nutrients enrichment from soil allow nanotechnology applications to be significant encumbrance. Agriculture is part of susceptibility, sustainability, and health fitness such as challenges in recent days. The purpose of nanoagroparticles is to minimize the spread chemicals amount, reduce the nutrient loss during fertilization, and increase the quality and yield with proper nutrient and pest management control. Nanotechnology has potential to advance agriculture sector through innovative nanotools which are capable to monitor the soil quality and enhance the plants’ capacity for nutrients absorption. The major concern of practicing nanotechnology tools in agriculture sector embraces particular applications such as nanopesticides, nanoherbicides, and nanofertilizers for trailing the nutrients and products levels to enhance productivity without soils and water contamination, and provide safety from insects, pests, and infectious diseases. Nanotechnology also acts as sensors for maintaining the agricultural plants’ health. This chapter covers present challenges for agriculture sustainability and food security explored by researchers in nanotechnology area for the improvement toward sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker S, Volova T, Prudnikova SV et al (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17. https://doi.org/10.1016/j.etap.2017.04.012

    Article  CAS  Google Scholar 

  2. Syed B, Nagendra Prasad MN, Satish S (2019) Synthesis and characterization of silver nanobactericides produced by Aneurinibacillus migulanus 141, a novel endophyte inhabiting Mimosa pudica L. Arab J Chem 12:3743–3752. https://doi.org/10.1016/j.arabjc.2016.01.005

    Article  CAS  Google Scholar 

  3. Marchiol L (2019) Nanofertilisers. An outlook of crop nutrition in the fourth agricultural revolution. Ital J Agron 14:183–190

    Article  Google Scholar 

  4. Vera-Reyes V-NE, Lira-Saldivar RH, Méndez-Argüello B (2018) Effects of nanoparticles on germination, growth, and plant crop development. In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural nanobiotechnology. Springer, Cham, pp 77–110

    Chapter  Google Scholar 

  5. Perlatti B, Souza Bergo PL, Fernandes da Silva MFG et al (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Trdan S (ed) Insecticides – development of safer and more effective technologies. IntechOpen, London, pp 523–550

    Google Scholar 

  6. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 4(7):31–53. https://doi.org/10.7314/APJCP.2014.15.17.7317

    Article  Google Scholar 

  7. Fraceto LF, Grillo R, de Medeiros GA et al (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:1–5. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  8. Pouratashi M, Iravani H (2012) Farmers’ knowledge of integrated pest management and learning style preferences: implications for information delivery. Int J Pest Manag 58:347–353. https://doi.org/10.1080/09670874.2012.724468

    Article  Google Scholar 

  9. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127. https://doi.org/10.1016/j.nantod.2014.09.009

    Article  CAS  Google Scholar 

  10. Kavitha KS, Baker S, Rakshith D et al (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci 2:66–76

    Google Scholar 

  11. Sangami S, Manu B (2017) Synthesis of green iron nanoparticles using laterite and their application as a fenton-like catalyst for the degradation of herbicide ametryn in water. Environ Technol Innov 8:150–163. https://doi.org/10.1016/j.eti.2017.06.003

    Article  Google Scholar 

  12. Mohammadinejad R, Shavandi A, Raie DS et al (2019) Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem 21:1845–1865. https://doi.org/10.1039/c9gc00335e

    Article  CAS  Google Scholar 

  13. Sangeetha J, Thangadurai D, Hospet R et al (2017) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer Nature Pvt Ltd, Singapore, pp 33–58

    Chapter  Google Scholar 

  14. Sangeetha J, Thangadurai D, Hospet R et al (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer Nature Pvt Ltd, Singapore, pp 73–97

    Chapter  Google Scholar 

  15. Raliya R, Saharan V, Dimkpa C, Biswas P (2018) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503. https://doi.org/10.1021/acs.jafc.7b02178

    Article  CAS  Google Scholar 

  16. Salaheldin TA (2016) Silver nanoparticles as a potent fungicide for Citrus phytopathogenic Fungi. J Nanomed Res 3:00065. https://doi.org/10.15406/jnmr.2016.03.00065

    Article  Google Scholar 

  17. Gholami M, Shirzad-Siboni M, Farzadkia M, Yang JK (2016) Synthesis, characterization, and application of ZnO/TiO2 nanocomposite for photocatalysis of a herbicide (Bentazon). Desalin Water Treat 57:13632–13644. https://doi.org/10.1080/19443994.2015.1060541

    Article  CAS  Google Scholar 

  18. Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29:1–13

    Google Scholar 

  19. Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45:1272–1291. https://doi.org/10.1080/21691401.2016.1241792

    Article  CAS  Google Scholar 

  20. Mishra S, Singh BR, Singh A et al (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:e97881. https://doi.org/10.1371/journal.pone.0097881

    Article  CAS  Google Scholar 

  21. Pandey S, Giri K, Kumar R et al (2018) Nanopesticides: opportunities in crop protection and associated environmental risks. Proc Natl Acad Sci India Sect B 88:1287–1308. https://doi.org/10.1007/s40011-016-0791-2

    Article  CAS  Google Scholar 

  22. Grillo R, dos Santos NZP, Maruyama CR et al (2012) Poly(ɛ-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9. https://doi.org/10.1016/j.jhazmat.2012.06.019

    Article  CAS  Google Scholar 

  23. El-Ramady H, El-Ghamry A, Mosa A, Alshaal T (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodivers Soil Secur 2:40–50. https://doi.org/10.21608/jenvbs.2018.3880.1029

    Article  Google Scholar 

  24. Pascoli M, Jacques MT, Agarrayua DA et al (2019) Neem oil based nanopesticide as an environmentally-friendly formulation for applications in sustainable agriculture: an ecotoxicological perspective. Sci Total Environ 677:57–67. https://doi.org/10.1016/j.scitotenv.2019.04.345

    Article  CAS  Google Scholar 

  25. Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health. https://doi.org/10.1016/j.coesh.2018.07.009

  26. Sharma G, Kumar A, Devi KA et al (2019) Chitosan nanofertilizer to foster source activity in maize. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.12.155

  27. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  Google Scholar 

  28. Rui M, Ma C, Hao Y et al (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:1–10. https://doi.org/10.3389/fpls.2016.00815

    Article  Google Scholar 

  29. Goswami P, Yadav S, Mathur J (2019) Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Sci Today 6:232–242. https://doi.org/10.14719/pst.2019.6.2.502

    Article  CAS  Google Scholar 

  30. Gustafsson H, Isaksson S, Altskär A, Holmberg K (2016) Mesoporous silica nanoparticles with controllable morphology prepared from oil-in-water emulsions. J Colloid Interface Sci 467:253–260. https://doi.org/10.1016/j.jcis.2016.01.026

    Article  CAS  Google Scholar 

  31. Prasad R, Kumar V, Kumar M, Choudhary D (2019) Green synthesis approaches of nanoagroparticles. In: Prasad R, Kumar V, Kumar M, Choudhary D (eds) Nanobiotechnology in bioformulations. Springer Nature, Cham, pp 187–224

    Chapter  Google Scholar 

  32. Jacques MT, Oliveirab JL, Campos EV et al (2017) Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf 139:245–253. https://doi.org/10.1016/j.ecoenv.2017.01.045

    Article  CAS  Google Scholar 

  33. Gahukar RT, Das RK (2020) Plant-derived nanopesticides for agricultural pest control: challenges and prospects. Nanotechnol Environ Eng 5:1–9. https://doi.org/10.1007/s41204-020-0066-2

    Article  CAS  Google Scholar 

  34. Holden PA, Gardea-Torresdey JL, Klaessig F et al (2016) considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ Sci Technol 50:6124–6145. https://doi.org/10.1021/acs.est.6b00608

    Article  CAS  Google Scholar 

  35. Wigger H, Hackmann S, Zimmermann T et al (2015) Influences of use activities and waste management on environmental releases of engineered nanomaterials. Sci Total Environ 535:160–171. https://doi.org/10.1016/j.scitotenv.2015.02.042

    Article  CAS  Google Scholar 

  36. Hermes P, Fabián F, Esperanza H et al (2020) Effect of engineered nanoparticles on soil biota: do they improve the soil quality and crop production or jeopardize them? L Degrad Dev. https://doi.org/10.1002/ldr.3595

  37. Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. https://doi.org/10.1038/s41565-018-0131-1

  38. Vishwakarma K, Upadhyay N, Kumar N et al (2018) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Tripathi DK, Ahmad P, Sharma S et al (eds) Nanomaterials in plants, algae, and microorganisms, Concepts and controversies, vol 1. Academic, Cambridge, MA, pp 473–500. https://doi.org/10.1016/B978-0-12-811487-2.00021-9

    Chapter  Google Scholar 

  39. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867. https://doi.org/10.1080/10643389.2012.671750

    Article  CAS  Google Scholar 

  40. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235. https://doi.org/10.1016/j.envint.2013.11.015

    Article  CAS  Google Scholar 

  41. Bhattacharyya A, Duraisamy P, Govindarajan M et al (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer Nature, Cham, pp 307–319

    Chapter  Google Scholar 

  42. Nuruzzaman M, Liu Y, Rahman MM et al (2019) Nanobiopesticides: composition and preparation methods. In: Koul O (ed) Nano-biopesticides today and future perspectives. Elsevier Inc, Amsterdam, pp 69–131

    Chapter  Google Scholar 

  43. de Oliveira JL, Campos EVR, Bakshi M et al (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561. https://doi.org/10.1016/j.biotechadv.2014.10.010

    Article  CAS  Google Scholar 

  44. Kumar S, Chauhan N, Gopal M et al (2015) Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81:631–637. https://doi.org/10.1016/j.ijbiomac.2015.08.062

    Article  CAS  Google Scholar 

  45. Kheiri A, Moosawi Jorf SA, Mallihipour A et al (2016) Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272. https://doi.org/10.1016/j.ijbiomac.2016.09.072

    Article  CAS  Google Scholar 

  46. Chaw Jiang L, Basri M, Omar D et al (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102:19–29. https://doi.org/10.1016/j.pestbp.2011.10.004

    Article  CAS  Google Scholar 

  47. Hazrati H, Saharkhiz MJ, Niakousari M, Moein M (2017) Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol Environ Saf 142:423–430. https://doi.org/10.1016/j.ecoenv.2017.04.041

    Article  CAS  Google Scholar 

  48. Pereira AES, Grillo R, Mello NFS et al (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215. https://doi.org/10.1016/j.jhazmat.2014.01.025

    Article  CAS  Google Scholar 

  49. Clemente Z, Grillo R, Jonsson M et al (2014) Ecotoxicological evaluation of poly(ε-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14:4911–4917. https://doi.org/10.1166/jnn.2014.8681

    Article  CAS  Google Scholar 

  50. Wani TA, Masoodi FA, Baba WN et al (2019) Nanoencapsulation of agrochemicals, fertilizers, and pesticides for improved plant production. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier Inc, Dordrecht, pp 279–298

    Chapter  Google Scholar 

  51. Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Elsevier Inc, Amsterdam, pp 193–225

    Chapter  Google Scholar 

  52. Guan HN, Chi DF, Yu J, Zhang SY (2011) Novel photodegradable insecticide W/TiO2/Avermectin nanocomposites obtained by polyelectrolytes assembly. Colloids Surf B: Biointerfaces 83:148–154. https://doi.org/10.1016/j.colsurfb.2010.11.013

    Article  CAS  Google Scholar 

  53. Perez JJ, Francois NJ (2016) Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr Polym 148:134–142. https://doi.org/10.1016/j.carbpol.2016.04.054

    Article  CAS  Google Scholar 

  54. Kumar S, Nehra M, Dilbaghi N et al (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153. https://doi.org/10.1016/j.jconrel.2018.12.012

    Article  CAS  Google Scholar 

  55. Silva M dos S, Cocenza DS, Grillo R et al (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374. https://doi.org/10.1016/j.jhazmat.2011.03.057

    Article  CAS  Google Scholar 

  56. Sanchez-Dominguez M, Boutonnet M, Solans C (2009) A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method. J Nanopart Res 11:1823–1829. https://doi.org/10.1007/s11051-009-9660-8

    Article  CAS  Google Scholar 

  57. Rivera-Rangel RD, González-Muñoz MP, Avila-Rodriguez M et al (2018) Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf A Physicochem Eng Asp 536:60–67. https://doi.org/10.1016/j.colsurfa.2017.07.051

    Article  CAS  Google Scholar 

  58. López-Quintela MA, Tojo C, Blanco MC et al (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278. https://doi.org/10.1016/j.cocis.2004.05.029

    Article  CAS  Google Scholar 

  59. Wang L, Li X, Zhang G et al (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235. https://doi.org/10.1016/j.jcis.2007.04.079

    Article  CAS  Google Scholar 

  60. Pemartin-Biernath K, Vela-González AV, Moreno-Trejo MB et al (2016) Synthesis of mixed Cu/Ce oxide nanoparticles by the oil-in-water microemulsion reaction method. Mater (Basel) 9:480. https://doi.org/10.3390/ma9060480

    Article  CAS  Google Scholar 

  61. Dzimitrowicz A, Bielawska-Pohl A, Pohl P et al (2020) Application of oil-in-water nanoemulsion carrying size-defined gold nanoparticles synthesized by non-thermal plasma for the human breast cancer cell lines migration and apoptosis. Plasma Chem Plasma Process 1–26. https://doi.org/10.1007/s11090-020-10070-6

  62. Duarte JL, Amado JRR, Oliveira AEMFM et al (2015) Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Braz J Pharmacogn 25:189–192. https://doi.org/10.1016/j.bjp.2015.02.010

    Article  CAS  Google Scholar 

  63. Ghosh V, Mukherjee A, Chandrasekaran N (2013) Formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity against Aedes aegypti. Asian J Chem 25:S321–S323

    Article  CAS  Google Scholar 

  64. Abd-Elsalam KA, Khokhlov AR (2015) Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl Nanosci 5:255–265. https://doi.org/10.1007/s13204-014-0398-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sangeetha, J. et al. (2021). Nanopesticides, Nanoherbicides, and Nanofertilizers: The Greener Aspects of Agrochemical Synthesis Using Nanotools and Nanoprocesses Toward Sustainable Agriculture. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_44

Download citation

Publish with us

Policies and ethics