Skip to main content

Abstract

Concrete (composite) is strengthened with fibers to upgrade its quality at a microscale level, to avoid splitting and to make it lightweight. Metallic, synthetic, and natural fibers are utilized in fiber-reinforced concrete (FRC) and fiber-reinforced mortar (FRM). For the most part, natural fibers are utilized alone or as a mix with synthetic filaments, where 15–20% of natural fibers are expelled as lingering waste. This waste is tossed in nature, and a part of it is utilized as fuel in brick works. Being little in size, the fiber waste consuming adds to ecological contamination when contrasted with other strong fuel. On the off chance that this waste is utilized in concrete composites to improve the properties, it would not just support to reuse the waste, however will likewise make the normal fiber-based industry increasingly productive by giving a worth included utilization of their waste. The recycling/reuse of waste is a valuable tool to preserve the natural resources and protect the climate. Using annually renewable resources is another excellent approach to counter these challenges. Fibers are used in the cement as reinforcement; this demonstration like an extension between the little splits and forestalls the further engendering of the bigger breaks. Different natural fibers, e.g., sisal, jute coir, and others, in small length are dispersed in a concrete matrix to obtain desired properties at lower cost eco-accommodating cements; the material got solid and eco-accommodating, yet strength was as yet an issue because of the hydrophilic nature (dampness retention) of natural fibers. Excellent mechanical properties are obtained by chemical treatment of the fibers and make it hydrophobic. In this process, the surface of the fiber is modified by the action of any other chemical to make it durable (reducing the moisture absorption and improving the fiber-matrix adhesion). The flexural, tensile, and compression strength of the FRC/FRM is increased up to an optimum level by the addition of fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. ACI Committee 544 (2002) State-of-the-art report on fiber reinforced concrete reported by ACI Committee 544. ACI Struct J 96(Reapproved):25–57

    Google Scholar 

  2. Yoo DY, Banthia N (2016) Mechanical properties of ultra-high-performance fiber-reinforced concrete: a review. Cem Concr Compos 73:267–280. https://doi.org/10.1016/j.cemconcomp.2016.08.001

    Article  CAS  Google Scholar 

  3. Eren O, Marar K (2010) Effect of steel fibers on plastic shrinkage cracking of normal and high strength concretes. Mater Res 13(2):135–141. https://doi.org/10.1590/S1516-14392010000200004

    Article  Google Scholar 

  4. Ahmad E, Kapoor E (2016) A review study on use of steel fiber as reinforcement material with concrete. Int J Latest Res Sci Technol 5(3):37–39

    Google Scholar 

  5. Abolmaali A, Mikhaylova A, Wilson A, Lundy J (2012) Performance of steel fiber-reinforced concrete pipes. Transp Res Rec 3(2313):168–177. https://doi.org/10.3141/2313-18

    Article  Google Scholar 

  6. Sarzalejo AG, Rossi B, Perri G, Winterberg R, Aristeguieta RE (2014) Fibers as structural element for the reinforcement of concrete – technical manual

    Google Scholar 

  7. Wafa FF (1990) Properties and applications of fiber reinforced concrete. JKAU Eng Sci 2(September):49–63. https://doi.org/10.4197/Eng.2-1.4

    Article  Google Scholar 

  8. Bentur A, Mindness S (2006) Fibre reinforced cementitious composites. CRC Press, Boca Raton, p 625

    Book  Google Scholar 

  9. Peled A, Zaguri E, Marom G (2008) Bonding characteristics of multifilament polymer yarns and cement matrices. Compos Part A Appl Sci Manuf 39(6):930–939. https://doi.org/10.1016/j.compositesa.2008.03.012

    Article  CAS  Google Scholar 

  10. Peled A, Sueki S, Mobasher B (2006) Bonding in fabric – cement systems: effects of fabrication methods. Cem Concr Res xx(May):11. https://doi.org/10.1016/j.cemconres.2006.05.009

    Article  CAS  Google Scholar 

  11. Naaman AE (2009) High performance fiber reinforced cement composites: classification and applications. In: Proceedings of the CBM-CI international workshop, Karachi, Pakistan, vol 1, no 1, pp 389–401, ISBN 978-969-8620-06-6

    Google Scholar 

  12. Naaman AE (2003) Strain hardening and deflection hardening fiber reinforced cement composites. In: High performance fiber reinforced cement composites 4 (HPFRCC 4), pp 95–113

    Google Scholar 

  13. Payrow P, Nokken M, Banu D, Feldman D (2011) Effect of surface treatment on the post-peak residual strength and toughness of polypropylene/polyethylene-blended fiber-reinforced concrete. J Compos Mater 45(20):2047–2054. https://doi.org/10.1177/0021998311399481

    Article  CAS  Google Scholar 

  14. Khan MI, Umair M, Shaker K, Basit A, Nawab Y, Kashif M (2020) Impact of waste fibers on the mechanical performance of concrete composites. J Text Inst. https://doi.org/10.1080/00405000.2020.1736423

  15. Brandt AM (2008) Cement-based composites – materials, mechanical properties and performance

    Google Scholar 

  16. Litherland KL, Oakley DR, Proctor BA (1981) The use of accelerated ageing procedures to predict the long term strength of GRC composites. Cem Concr Res 11(3):455–466. https://doi.org/10.1016/0008-8846(81)90117-4

    Article  Google Scholar 

  17. Bowen DH (1968) Fiber reinforced ceramics. Fibre Sci Technol 1:85–112

    Article  Google Scholar 

  18. López-Buendía AM, Romero-Sánchez MD, Climent V, Guillem C (2013) Surface treated polypropylene (PP) fibres for reinforced concrete. Cem Concr Res 54:29–35. https://doi.org/10.1016/j.cemconres.2013.08.004

    Article  CAS  Google Scholar 

  19. Das H, Saikia P, Kalita D (2015) Physico-mechanical properties of banana fiber reinforced polymer composite as an alternative building material. Key Eng Mater 650:131–138. https://doi.org/10.4028/www.scientific.net/KEM.650.131

    Article  Google Scholar 

  20. Wang Y, Zureick AH, Cho BS, Scott DE (1994) Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J Mater Sci 29:4191–4199

    Article  CAS  Google Scholar 

  21. Ali M (2012) Natural fibres as construction materials. J Civ Eng Constr Technol 3(3):80–89. https://doi.org/10.5897/JCECT11.100

  22. Alhozaimy AM, Soroushian P, Mirza F (1996) Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cem Concr Compos 18(2):85–92. https://doi.org/10.1016/0958-9465(95)00003-8

    Article  CAS  Google Scholar 

  23. Thériault M, Benmokrane B (1998) Effects of FRP reinforcement ratio and concrete strength on flexural behavior of concrete beams. J Compos Constr 2(1):7–16. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(7)

    Article  Google Scholar 

  24. Manolis GD, Gareis PJ, Tsonos AD, Neal JA (1997) Dynamic properties of polypropylene fiber-reinforced concrete slabs. Cem Concr Compos 19:341–349. https://doi.org/10.1016/S0958-9465(97)00030-9

    Article  CAS  Google Scholar 

  25. Foti D (2011) Preliminary analysis of concrete reinforced with waste bottles PET fibers. Constr Build Mater 25(4):1906–1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066

    Article  Google Scholar 

  26. Silva E, Coelho J (2013) Hybrid polyethylene/polypropylene blended fiber-reinforced cement composite. J Compos 47(25):3131–3141

    CAS  Google Scholar 

  27. Ahmed S, Maalej M, Paramasivam P (2007) Analytical model for tensile strain hardening and multiple cracking behavior of hybrid fiber-engineered cementitious composites. J Mater Civ 19(7):527–539

    Article  CAS  Google Scholar 

  28. Romualdi JP, Batson G (1963) Behavior of reinforced concrete beams with closely spaced reinforcement. ACI J Proc 60(6):775–789. https://doi.org/10.14359/7878

    Article  Google Scholar 

  29. Romualdi JJP, Mandel JA (1964) Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. ACI J Proc 61(6):657–672. https://doi.org/10.14359/7801

    Article  Google Scholar 

  30. Silva FDA, Mobasher B, Filho RDT (2009) Advances in natural fiber cement composites: a material for the sustainable construction industry. In: 4th Colloquium on textiles reinforced structures, pp 377–388

    Google Scholar 

  31. De Vries J and Polder RB (1997) Hydrophobic treatment of concrete. Constr Build Mater 11(4):259–265

    Google Scholar 

  32. Horrocks AR, Anand SC (eds) (2000) Handbook of technical textiles. Woodhead Publishing, New York

    Google Scholar 

  33. Wang Y (2010) Fiber and textile waste utilization. Waste Biomass Valoriz 1(1):135–143. https://doi.org/10.1007/s12649-009-9005-y

    Article  Google Scholar 

  34. Raftoyiannis IG (2012) Experimental testing of composite panels reinforced with cotton fibers. Open J Compos Mater 02(02):31–39. https://doi.org/10.4236/ojcm.2012.22005

    Article  CAS  Google Scholar 

  35. Das H, Saikia P, Kalita D (2015) Physico-mechanical properties of banana fiber reinforced polymer composite as an alternative building material. Key Eng Mater 650:131. https://doi.org/10.4028/www.scientific.net/KEM.650.131

  36. Agopyan V, Savastano H, John V (2005) Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cem Concr Compos 27(5):527–536

    Article  CAS  Google Scholar 

  37. Agopyan V, John V (1992) Durability evaluation of vegetable fibre reinforced materials: sisal and coir vegetable fibres as well as those obtained from disintegrated newsprint found to be the most suitable fibres for building purposes. Build Res Inf 20(4):233–235

    Article  Google Scholar 

  38. Ismail MA (2007) Compressive and tensile strength of natural fibre-reinforced cement base composites. Al Rafidain Eng 15(July 2005):42–51

    Google Scholar 

  39. Kriker A, Debicki G, Bali A, Khenfer M (2005) Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cem Concr Compos 27(5):554–564

    Article  CAS  Google Scholar 

  40. Reis J (2006) Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr Build Mater 20(9):673–678

    Article  Google Scholar 

  41. Soroushian P, Ravanbakhsh S (1998) Control of plastic shrinkage cracking with specialty cellulose fibers. Mater J 95(4):429–435

    CAS  Google Scholar 

  42. Boghossian E, Wegner L (2008) Use of flax fibres to reduce plastic shrinkage cracking in concrete. Cem Concr Compos 30(10):929–937

    Article  CAS  Google Scholar 

  43. Ramakrishna G, Sundararajan T (2005) Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study. Cem Concr Compos 27(5):547–553

    Article  CAS  Google Scholar 

  44. Siddique R (2004) Properties of concrete incorporating high volumes of class F fly ash and san fibers. Cem Concr Res 31(1):37–42

    Article  Google Scholar 

  45. Mizsey P, Racz L (2010) Cleaner production alternatives: biomass utilisation options. J Clean Prod 18(8):767–770. https://doi.org/10.1016/j.jclepro.2010.01.007

    Article  CAS  Google Scholar 

  46. Halimi MT, Hassen MB, Azzouz B, Sakli F (2007) Effect of cotton waste and spinning parameters on rotor yarn quality. J Text Inst 98(5):437–442. https://doi.org/10.1080/00405000701547649

    Article  Google Scholar 

  47. Kayali O, Khatib J (2009) Concrete sustainability and the role of fiber reinforcement. In: International symposium on innovation & sustainability of structures in civil engineering, Vol:148, pp 153

    Google Scholar 

  48. Obla KH (2009) What is green concrete? Indian Concr J 83(4):26–28

    Google Scholar 

  49. Gartner E (2004) Industrially interesting approaches to ‘low-CO2’ cements. Cem Concr Res 34(October 2003):1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021

    Article  CAS  Google Scholar 

  50. Iyer P, Kenno SY, Das S (2015) Mechanical properties of fiber-reinforced concrete made with basalt filament fibers. J Mater Civ Eng 27(11):1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001272

    Article  CAS  Google Scholar 

  51. Jiang C, Fan K, Wu F, Chen D (2014) Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater Des 58:187–193. https://doi.org/10.1016/j.matdes.2014.01.056

    Article  CAS  Google Scholar 

  52. Tumadhir, M et al. (2013) Thermal and mechanical properties of basalt fibre reinforced concrete. International Journal of Civil and Environmental Engineering, 7(4), 334–337

    Google Scholar 

  53. Ramakrishnan V, Tolmare NS, Brik VB (1998) Performance evaluation of 3-D basalt fiber reinforced concrete & basalt rod reinforced concrete. Report, no November, p 97

    Google Scholar 

  54. Tumadhir, M et al. (2013) Thermal and mechanical properties of basalt fibre reinforced concrete. International Journal of Civil and Environmental Engineering, 7(4), 334–337

    Google Scholar 

  55. Dias DP, Thaumaturgo C (2005) Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem Concr Compos 27(1):49–54. https://doi.org/10.1016/j.cemconcomp.2004.02.044

    Article  CAS  Google Scholar 

  56. Adhikari S (2013) Mechanical and structural characterization of mini-bar reinforced concrete beams, University of Akron

    Google Scholar 

  57. Ayub T, Shafiq N, Nuruddin MF (2014) Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng 77:131–139. https://doi.org/10.1016/j.proeng.2014.07.029

    Article  Google Scholar 

  58. Shaikh FUA, Taweel M (2015) Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures. Adv Concr Constr 3(4):283–293. https://doi.org/10.12989/acc.2015.3.4.283

    Article  Google Scholar 

  59. Kizilkanat AB, Kabay N, Akyüncü V, Chowdhury S, Akça AH (2015) Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study. Constr Build Mater 100:218–224. https://doi.org/10.1016/j.conbuildmat.2015.10.006

    Article  Google Scholar 

  60. Suhendro B (2014) Toward green concrete for better sustainable environment. Procedia Eng 95:305–320. https://doi.org/10.1016/j.proeng.2014.12.190

    Article  Google Scholar 

  61. Aldahdooh MAA, Muhamad Bunnori N, Megat Johari MA (2013) Development of green ultra-high performance fiber reinforced concrete containing ultrafine palm oil fuel ash. Constr Build Mater 48:379–389. https://doi.org/10.1016/j.conbuildmat.2013.07.007

    Article  Google Scholar 

  62. Aldahdooh MAA, Muhamad Bunnori N, Megat Johari MA (2014) Influence of palm oil fuel ash on ultimate flexural and uniaxial tensile strength of green ultra-high performance fiber reinforced cementitious composites. Mater Des 54:694–701. https://doi.org/10.1016/j.matdes.2013.08.094

    Article  CAS  Google Scholar 

  63. Awal ASMA, Mohammadhosseini H (2016) Green concrete production incorporating waste carpet fiber and palm oil fuel ash. J Clean Prod 137:157–166. https://doi.org/10.1016/j.jclepro.2016.06.162

    Article  CAS  Google Scholar 

  64. Silva F d A, Mobasher B, Filho RDT (2009) Cracking mechanisms in durable sisal fiber reinforced cement composites. Cem Concr Compos 31(10):721–730. https://doi.org/10.1016/j.cemconcomp.2009.07.004

    Article  CAS  Google Scholar 

  65. Elsaid A, Dawood M, Seracino R, Bobko C (2011) Mechanical properties of kenaf fiber reinforced concrete. Constr Build Mater 25(4):1991–2001. https://doi.org/10.1016/j.conbuildmat.2010.11.052

    Article  Google Scholar 

  66. Aghdasi P, Ostertag CP (2018) Green ultra-high performance fiber-reinforced concrete (G-UHP-FRC). Constr Build Mater 190:246–254. https://doi.org/10.1016/j.conbuildmat.2018.09.111

    Article  Google Scholar 

  67. Sellami A, Merzoud M, Amziane S (2013) Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Constr Build Mater 47:1117–1124. https://doi.org/10.1016/j.conbuildmat.2013.05.073

    Article  Google Scholar 

  68. Lepech MD, Li VC, Robertson RE, Keoleian GA (2008) Design of green engineered cementitious composites for improved sustainability. ACI Mater J 105(6):567–575. https://doi.org/10.14359/20198

    Article  CAS  Google Scholar 

  69. Mo KH, Alengaram UJ, Jumaat MZ, Yap SP, Lee SC (2016) Green concrete partially comprised of farming waste residues: a review. J Clean Prod 117:122–138. https://doi.org/10.1016/j.jclepro.2016.01.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Umair, M., Khan, M.I., Nawab, Y. (2021). Green Fiber-Reinforced Concrete Composites. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_113

Download citation

Publish with us

Policies and ethics