Skip to main content

Nanomaterials and Nanocomposites: Classification and Toxicity

  • Reference work entry
  • First Online:
  • 1249 Accesses

Abstract

This chapter overviews nanomaterial and nanocomposite classification together with the main aspects of their toxicity. The classification of nanoparticles and nanofibers according to their size, composition, and aspect ratio together with exemplified electron microscopy images facilitates understanding the role of nanoparticles in determining the properties of a nanocomposite. Nanocomposites themselves encompass a very broad category of materials. The classification of nanocomposites according to the dimensionality of their component phases shows the existence of two main categories of materials: those having a matrix phase at macroscale and a filler at nanoscale or both matrix and filler at nanoscale, such as core–shell nanoparticles or decorated fibers. Nanocomposites are shown to release fragments during their manufacturing, use, and disposal. Cutting, drilling, and sanding of nanocomposite pose an occupational exposure risk to workers. Thermal and mechanical stress, photodegradation, interaction with liquids, and incineration processes are all shown to result in the release of fragments at nano- and microscale. The released nanoparticles and nanofibers that are airborne are potentially toxic due to the possibility of inhalation. Their toxicity resides in the ability of nanoparticles to be pervasive, bypass organisms’ defense systems, travel through the pores of fenestrated tissues, become systemic, enter cells, and disrupt cellular processes leading to a gamut of diseases. In order to create safe nanocomposites, it is important to determine the types of nanomaterials that pose a health risk and to limit their use or mitigate their toxicity.

This is a preview of subscription content, log in via an institution.

References

  1. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mate Res-Ibero-Am J Mater 12(1):1–39

    CAS  Google Scholar 

  2. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71. and references therein

    Article  Google Scholar 

  3. Buzea C, Pacheco I (2017) Nanomaterials and their classification. In: Shukla AK (ed) EMR/ESR/EPR spectroscopy for characterization of nanomaterials. Springer, New Delhi, pp 3–45

    Chapter  Google Scholar 

  4. Pacheco I, Buzea C (2017) Nanomaterials toxicity. In: C.a.K. Hussain B (Ed) Advanced environmental analysis: applications of nanomaterials, vol 2. The Royal Society of Chemistry. https://pubs.rsc.org/en/content/chapter/bk9781782629061-00273/978-1-78262-906-1

  5. Pacheco I, Buzea C (2018) Metal nanoparticles and their toxicity. In: Thota S, Crans DC (eds) Metal nanoparticles. Synthesis and applications in pharmaceutical sciences. Wiley-VCH Verlag GmbH, Singapore

    Google Scholar 

  6. Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58(3):533–606

    Article  CAS  Google Scholar 

  7. Kamigaito O (1991) What can be improved by nanometer composites? J Jpn Soc Powder Metalurgy 38:315–321

    Article  CAS  Google Scholar 

  8. Johnston RL, Rao CNR, Edwards PP (1998) The development of metallic behaviour in clusters [and discussion]. Philos Trans Math Phys Eng Sci 356(1735):211–230

    Article  CAS  Google Scholar 

  9. Sharipov AS, Loukhovitski BI (2019) Small atomic clusters: quantum chemical research of isomeric composition and physical properties. Struct Chem 30(6):2057–2084

    Article  CAS  Google Scholar 

  10. Prabha S et al (2016) Effect of size on biological properties of nanoparticles employed in gene delivery. Artificial Cells Nanomed Biotechnol 44(1):83–91

    Article  CAS  Google Scholar 

  11. Xia Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Article  CAS  Google Scholar 

  12. Das SK, Das AR, Guha AK (2010) Microbial synthesis of multishaped gold nanostructures. Small 6(9):1012–1021

    Article  CAS  Google Scholar 

  13. Personick ML et al (2011) Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J Am Chem Soc 133(16):6170–6173

    Article  CAS  Google Scholar 

  14. Wang JY et al (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angewandte Chemie-Int Ed 52(25):6417–6420

    Article  CAS  Google Scholar 

  15. Tessonnier JP et al (2009) Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47(7):1779–1798

    Article  CAS  Google Scholar 

  16. Wiley B, Sun YG, Xia YN (2005) Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir 21(18):8077–8080

    Article  CAS  Google Scholar 

  17. Dumestre F et al (2003) Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. Angewandte Chemie-Int Ed 42(42):5213–5216

    Article  CAS  Google Scholar 

  18. Chen JY et al (2004) Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J Am Chem Soc 126(35):10854–10855

    Article  CAS  Google Scholar 

  19. Zhao N et al (2008) Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24(3):991–998

    Article  CAS  Google Scholar 

  20. Liu L et al (2011) Wet-chemical synthesis of palladium nanosprings. Nano Lett 11(9):3979–3982

    Article  CAS  Google Scholar 

  21. Paul R, Dai LM (2018) Interfacial aspects of carbon composites. Composite Interfaces 25(5–7):539–605

    Article  CAS  Google Scholar 

  22. Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    Article  CAS  Google Scholar 

  23. Omanovic-Miklicanin E et al (2020) Nanocomposites: a brief review. Heal Technol 10(1):51–59

    Article  Google Scholar 

  24. Ging J et al (2014) Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications. Sci Total Environ 473-474:9–19. and references therein

    Article  CAS  Google Scholar 

  25. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  26. Ogura I, Kotake M, Ata S (2019) Quantitative evaluation of carbon nanomaterial releases during electric heating wire cutting and sawing machine cutting of expanded polystyrene-based composites using thermal carbon analysis. J Occup Environ Hyg 16(2):165–178

    Article  CAS  Google Scholar 

  27. Wu XZ et al (2018) Reducing structural defects and oxygen-containing functional groups in GO-hybridized CNTs aerogels: simultaneously improve the electrical and mechanical properties to enhance pressure sensitivity. ACS Appl Mater Interfaces 10(45):39009–39017

    Article  CAS  Google Scholar 

  28. Tai WP, Kim YS, Kim JG (2003) Fabrication and magnetic properties of Al2O3/co nanocomposites. Mater Chem Phys 82(2):396–400

    Article  CAS  Google Scholar 

  29. Qian D et al (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870

    Article  CAS  Google Scholar 

  30. Peng JS et al (2020) Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring. Matter 2(1):220–232

    Article  Google Scholar 

  31. Wang L, Sanchez-Soto M, Maspoch ML (2013) Polymer/clay aerogel composites with flame retardant agents: mechanical, thermal and fire behavior. Mater Des 52:609–614

    Article  CAS  Google Scholar 

  32. Nakamura M et al (2014) Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon 69:409–416

    Article  CAS  Google Scholar 

  33. Anton R (2008) On the reaction kinetics of Ni with amorphous carbon. Carbon 46(4):656–662

    Article  CAS  Google Scholar 

  34. Okada A et al (2013) Colloidal polarization of yolk/shell particles by reconfiguration of inner cores responsive to an external magnetic field. Langmuir 29(28):9004–9009

    Article  CAS  Google Scholar 

  35. Yoo JB et al (2012) Controlled synthesis of monodisperse SiO2-TiO2 microspheres with a yolk-shell structure as effective photocatalysts. ChemSusChem 5(12):2334–2340

    Article  CAS  Google Scholar 

  36. Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35(1):1–159

    Article  CAS  Google Scholar 

  37. Korth BD et al (2006) Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J Am Chem Soc 128(20):6562–6563

    Article  CAS  Google Scholar 

  38. Xia YS, Tang ZY (2012) Monodisperse hollow supraparticles via selective oxidation. Adv Funct Mater 22(12):2585–2593

    Article  CAS  Google Scholar 

  39. Mark AG et al (2013) Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat Mater 12(9):802–807

    Article  CAS  Google Scholar 

  40. Hu LB et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714

    Article  CAS  Google Scholar 

  41. Cheng B, Le Y, Yu JG (2010) Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires. J Hazard Mater 177(1–3):971–977

    Article  CAS  Google Scholar 

  42. Bianco A et al (2018) A carbon science perspective in 2018: current achievements and future challenges. Carbon 132:785–801

    Article  CAS  Google Scholar 

  43. Amorim MJB et al (2018) Environmental impacts by fragments released from nanoenabled products: a multiassay, multimaterial exploration by the SUN approach. Environ Sci Technol 52(3):1514–1524

    Article  CAS  Google Scholar 

  44. Anas M et al (2019) Detection and quantification of free carbon nanotubes in abraded polymer nanocomposites using UV-vis spectroscopy. Nano 16:7

    Google Scholar 

  45. Bello D et al (2009) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 11(1):231–249

    Article  CAS  Google Scholar 

  46. Bello D et al (2010) Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int J Occup Environ Health 16(4):434–450

    Article  CAS  Google Scholar 

  47. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  CAS  Google Scholar 

  48. Bouillard JX et al (2013) Nanosafety by design: risks from nanocomposite/nanowaste combustion. J Nanopart Res 15(4):11

    Article  CAS  Google Scholar 

  49. Cena LG, Peters TM (2011) Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J Occup Environ Hyg 8(2):86–92

    Article  CAS  Google Scholar 

  50. Ding Y et al (2017) Airborne engineered nanomaterials in the workplace-a review of release and worker exposure during nanomaterial production and handling processes. J Hazard Mater 322:17–28

    Article  CAS  Google Scholar 

  51. Duncan TV (2015) Release of engineered nanomaterials from polymer nanocomposites: the effect of matrix degradation. ACS Appl Mater Interfaces 7(1):20–39. and references therein

    Article  CAS  Google Scholar 

  52. Duncan TV, Pillai K (2015) Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Interfaces 7(1):2–19

    Article  CAS  Google Scholar 

  53. Hennig MP et al (2019) Release of radiolabeled multi-walled carbon nanotubes (C-14-MWCNT) from epoxy nanocomposites into quartz sand-water systems and their uptake by Lumbriculus variegatus. Nano 14:12

    Google Scholar 

  54. Hirth S et al (2013) Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials. J Nanopart Res 15(4):15

    Article  CAS  Google Scholar 

  55. Huang YM et al (2011) Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 24(5):291–297

    Article  CAS  Google Scholar 

  56. Kang J et al (2017) Generation and characterization of aerosols released from sanding composite nanomaterials containing carbon nanotubes. Nano 5:41–50

    Google Scholar 

  57. Lankone RS et al (2017) Photodegradation of polymer-CNT nanocomposites: effect of CNT loading and CNT release characteristics. Environ Sci-Nano 4(4):967–982

    Article  CAS  Google Scholar 

  58. Neubauer N et al (2017) Nanoscale coloristic pigments: upper limits on releases from pigmented plastic during environmental aging, in food contact, and by leaching. Environ Sci Technol 51(20):11669–11680

    Article  CAS  Google Scholar 

  59. Ogura I et al (2017) Airborne particles released by crushing CNT composites. In: 5th nanosafe international conference on health and safety issues related to nanomaterials for a socially responsible approach. Iop Publishing Ltd, Bristol. p. UNSP 012015. https://doi.org/10.1088/1742-6596/838/1/012015

    Chapter  Google Scholar 

  60. Pang C et al (2017) Releases from transparent blue automobile coatings containing nanoscale copper phthalocyanine and their effects on J774 A1 macrophages. Nano 7:75–83

    Google Scholar 

  61. Phan DC et al (2018) Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions. Sci Total Environ 639:804–814

    Article  CAS  Google Scholar 

  62. Rhiem S et al (2016) Release of C-14-labelled carbon nanotubes from polycarbonate composites. Environ Pollut 215:356–365

    Article  CAS  Google Scholar 

  63. Ruggiero E et al (2019) Environmental release from automotive coatings are similar for different (nano)forms of pigments. Environmental Science-Nano 6(10):3039–3048

    Article  CAS  Google Scholar 

  64. Singh D et al (2019) Thermal decomposition/incineration of nano-enabled coatings and effects of nanofiller/matrix properties and operational conditions on byproduct release dynamics: potential environmental health implications. Nano 13:44–55

    Google Scholar 

  65. von Goetz N et al (2013) Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Additives Contaminants A-Chem Analy Control Exposure Risk Assessment 30(3):612–620

    Article  CAS  Google Scholar 

  66. Wang J, Schlagenhauf L, Setyan A (2017) Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts. J Nanobiotechnol 15:16

    Article  CAS  Google Scholar 

  67. Windler L et al (2012) Release of titanium dioxide from textiles during washing. Environ Sci Technol 46(15):8181–8188

    Article  CAS  Google Scholar 

  68. Morawska L et al (2008) Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ 42(35):8113–8138

    Article  CAS  Google Scholar 

  69. Viitanen AK et al (2017) Workplace measurements of ultrafine particles-a literature review. Ann Work Exposures Health 61(7):749–758

    Article  CAS  Google Scholar 

  70. Dahm MM et al (2018) Exposure assessments for a cross-sectional epidemiologic study of US carbon nanotube and nanofiber workers. Int J Hyg Environ Health 221(3):429–440

    Article  CAS  Google Scholar 

  71. Castranova V, Schulte PA, Zumwalde RD (2013) Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 46(3):642–649

    Article  CAS  Google Scholar 

  72. Bishop L et al (2017) In vivo toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects. ACS Nano 11(9):8849–8863

    Article  CAS  Google Scholar 

  73. Ajayan PM et al (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12(10):750–753

    Article  CAS  Google Scholar 

  74. Ren Y et al (2003) Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite. Carbon 41(11):2177–2179

    Article  CAS  Google Scholar 

  75. Joy A et al (2020) Effect of the structure and morphology of carbon nanotubes on the vibration damping characteristics of polymer-based composites. Nanoscale Adv 2(3):1228–1235

    Article  CAS  Google Scholar 

  76. Schlagenhauf L et al (2015) Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles. Nanoscale 7(44):18524–18536

    Article  CAS  Google Scholar 

  77. Benn T et al (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882

    Article  CAS  Google Scholar 

  78. Hahn A et al (2011) Metal ion release kinetics from nanoparticle silicone composites. J Control Release 154(2):164–170

    Article  CAS  Google Scholar 

  79. Soto KF et al (2005) Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 7(2–3):145–169

    Article  CAS  Google Scholar 

  80. Som C et al (2011) Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ Int 37(6):1131–1142

    Article  CAS  Google Scholar 

  81. Liu JY et al (2012) Degradation products from consumer nanocomposites: a case study on quantum dot lighting. Environ Sci Technol 46(6):3220–3227

    Article  CAS  Google Scholar 

  82. Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2(1):14

    Article  CAS  Google Scholar 

  83. Nel A et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  84. Wu TS, Tang M (2018) Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 38(1):25–40

    Article  CAS  Google Scholar 

  85. Karmakar A, Zhang Q, Zhang Y (2014) Neurotoxicity of nanoscale materials. J Food Drug Anal 22(1):147–160

    Article  CAS  Google Scholar 

  86. Schrand AM et al (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev-Nanomed Nanobiotechnol 2(5):544–568

    Article  CAS  Google Scholar 

  87. Dahm MM et al (2015) Carbon nanotube and nanofiber exposure assessments: an analysis of 14 site visits. Ann Occup Hyg 59(6):705–723

    Article  CAS  Google Scholar 

  88. Hedmer M et al (2014) Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Ann Occup Hyg 58(3):355–379

    CAS  Google Scholar 

  89. Kuijpers E et al (2017) Understanding workers’ exposure: systematic review and data-analysis of emission potential for NOAA. J Occup Environ Hyg 14(5):349–359

    Article  CAS  Google Scholar 

  90. Buzea C, Pacheco I (2019) Toxicity of nanoparticles. In: F.P.-T. F., et al. (eds) Nanotechnology in eco-efficient construction. Materials, processes and applications. 2nd edn. Duxford, United Kingdom: Woodhead Publishing, an imprint of Elsevier

    Google Scholar 

  91. Cappelletti R et al (2016) Health status of male steel workers at an electric arc furnace (EAF) in Trentino, Italy. J Occupat Med Toxicol 11(1):7

    Google Scholar 

  92. Osinubi OYO, Gochfeld M, Kipen HM (2000) Health effects of asbestos and nonasbestos fibers. Environ Health Perspect 108:665–674

    CAS  Google Scholar 

  93. Sukhanova A et al (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13:21

    Article  CAS  Google Scholar 

  94. IARC (2018) IARC monographs on the identification of carcinogenic hazards to humans. [April 2018]; Available from: http://monographs.iarc.fr/ENG/Classification/

  95. Borm PJA, Schins RPF, Albrecht C (2004) Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer 110(1):3–14

    Article  CAS  Google Scholar 

  96. Kusaka Y et al (2001) Metal-induced lung disease: lessons from Japan's experience. J Occup Health 43(1):1–23

    Article  CAS  Google Scholar 

  97. Guha N et al (2017) Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. Lancet Oncol 18(5):581–582

    Article  Google Scholar 

  98. Cogliano VJ et al (2011) Preventable exposures associated with human cancers. Jnci-J Natl Cancer Institute 103(24):1827–1839

    Article  Google Scholar 

  99. Sighinolfi GL et al (2016) Carcinogenic potential of metal nanoparticles in BALB/3T3 cell transformation assay. Environ Toxicol 31:509–519

    CAS  Google Scholar 

  100. Mannucci PM et al (2015) Effects on health of air pollution: a narrative review. Intern Emerg Med 10(6):657–662

    Article  Google Scholar 

  101. Donaldson K et al (2013) Nanoparticles and the cardiovascular system: a critical review. Nanomedicine 8(3):403–423

    Article  CAS  Google Scholar 

  102. Chung M et al (2015) Association of PNC, BC, and PM2.5 measured at a central monitoring site with blood pressure in a predominantly near highway population. Int J Environ Res Public Health 12(3):2765–2780

    Article  CAS  Google Scholar 

  103. Cohen AJ et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389(10082):1907–1918

    Article  Google Scholar 

  104. Heusinkveld HJ et al (2016) Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology 56:94–106

    Article  CAS  Google Scholar 

  105. Chen H et al (2017) Living near major roads and the incidence of dementia, Parkinson's disease, and multiple sclerosis: a population-based cohort study. Lancet 389(10070):718–726

    Article  Google Scholar 

  106. Wang Y, Xiong LL, Tang M (2017) Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol 37(6):644–667

    Article  CAS  Google Scholar 

  107. Song B et al (2015) A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res Lett 10(1):1042

    Article  Google Scholar 

  108. Maher BA et al (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A 113(39):10797–10801

    Article  CAS  Google Scholar 

  109. Calderon-Garciduenas L et al (2016) Cerebrospinal fluid biomarkers in highly exposed PM2.5 urbanites: the risk of Alzheimer's and Parkinson's diseases in young Mexico city residents. J Alzheimers Dis 54(2):597–613

    Article  CAS  Google Scholar 

  110. Calderon-Garciduenas L et al (2016) Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease. Environ Res 146:404–417

    Article  CAS  Google Scholar 

  111. Gonzalez-Maciel A et al (2017) Combustion-derived nanoparticles in key brain target cells and organelles in young urbanites: culprit hidden in plain sight in Alzheimer's disease development. J Alzheimers Dis 59(1):189–208

    Article  CAS  Google Scholar 

  112. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124

    Article  CAS  Google Scholar 

  113. Ilinskaya AN, Dobrovolskaia MA (2014) Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol 171(17):3988–4000

    Article  CAS  Google Scholar 

  114. He D et al (2017) Association between particulate matter 2.5 and diabetes mellitus: a meta-analysis of cohort studies. Journal of Diabetes Investigation 8(5):687–696

    Article  Google Scholar 

  115. Ema M, Gamo M, Honda K (2016) Developmental toxicity of engineered nanomaterials in rodents. Toxicol Appl Pharmacol 299:47–52

    Article  CAS  Google Scholar 

  116. Ema M et al (2016) Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review. Nanotoxicology 10(4):391–412

    Article  CAS  Google Scholar 

  117. Ema M et al (2017) A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67:149–164

    Article  CAS  Google Scholar 

  118. Francis AP, Devasena T (2018) Toxicity of carbon nanotubes: a review. Toxicol Ind Health 34(3):200–210

    Article  CAS  Google Scholar 

  119. Toyokuni S (2013) Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev 65(15):2098–2110

    Article  CAS  Google Scholar 

  120. Li R et al (2013) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7(3):2352–2368

    Article  CAS  Google Scholar 

  121. Cai J et al (2019) Translocation of transition metal oxide nanoparticles to breast milk and offspring: the necessity of bridging mother-offspring-integration toxicological assessments. Environ Int 133:17

    Article  CAS  Google Scholar 

  122. Kobayashi N, Izumi H, Morimoto Y (2017) Review of toxicity studies of carbon nanotubes. J Occup Health 59(5):394–407. and references therein

    Article  CAS  Google Scholar 

  123. Knudsen KB et al (2019) Physicochemical predictors of multi-walled carbon nanotube-induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different multi-walled carbon nanotubes in mice. Basic Clin Pharmacol Toxicol 124(2):211–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pacheco, I., Buzea, C. (2021). Nanomaterials and Nanocomposites: Classification and Toxicity. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_1

Download citation

Publish with us

Policies and ethics