Skip to main content

Low Back Pain: Additive Manufacturing for Disc Degeneration and Herniation Repair

  • Chapter
  • First Online:
Virtual Prototyping & Bio Manufacturing in Medical Applications

Abstract

Low back pain is believed to affect 80% of the world’s population at some point in their lifetime. In the UK alone, it is one of the main causes of work absenteeism and decreased quality of life. Degenerative disc disease and intervertebral disc (IVD) herniation (i.e., “slipped disc”) are the main causes of low back pain and sciatica. Discectomy and microdiscectomy, two of the most commonly used surgical procedures, aim to remove the tissue exerting pressure on the nerves and thus relieve the pain. However, this is only a temporary solution as damage to the IVD is not repaired and may require additional surgical interventions. While this procedure is less aggressive in comparison to spinal disc arthroplasty and fusion, microdiscectomy still requires a down-time of 1–4 weeks post-surgery. Emerging treatments for IVD repair aim to address these concerns, novel NP and AF repair strategies are being developed based on novel additive manufacturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Gakidou, A. Afshin, A.A. Abajobir, K.H. Abate, C. Abbafati, K.M. Abbas, F. Abd-Allah, et al., Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390(10100), 1345–1422 (2017). https://doi.org/10.1016/S0140-6736(17)32366-8

    Article  Google Scholar 

  2. S.I. Hay, A.A. Abajobir, K.H. Abate, C. Abbafati, K.M. Abbas, F. Abd-Allah, R.S. Abdulkader, et al., Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390(10100), 1260–1344 (2017). https://doi.org/10.1016/S0140-6736(17)32130-X

    Article  Google Scholar 

  3. T. Vos, A.A. Abajobir, K.H. Abate, C. Abbafati, K.M. Abbas, F. Abd-Allah, R.S. Abdulkader, et al., Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet 390(10100), 1211–1259 (2017). https://doi.org/10.1016/S0140-6736(17)32154-2

    Article  Google Scholar 

  4. D. Hoy, C. Bain, G. Williams, L. March, P. Brooks, F. Blyth, A. Woolf, T. Vos, R. Buchbinder, A systematic review of the global prevalence of low back pain. Arthritis Rheum. 64(6), 2028–2037 (2012). https://doi.org/10.1002/art.34347

    Article  Google Scholar 

  5. N. Maniadakis, A. Gray, The Economic Burden of Back Pain in the UK. Pain 84(1), 95–103 (2000). https://doi.org/10.1016/S0304-3959(99)00187-6

    Article  Google Scholar 

  6. Higher Safety Executive, Work-Related Musculoskeletal Disorders (WRMSDs) Statistics in Great Britain 2017 (2017). www.hse.gov.uk/statistics/

  7. S.D. Kuslich, C.L. Ulstrom, C.J. Michael, The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop. Clin. North Am. 22(2), 181–187 (1991). http://www.ncbi.nlm.nih.gov/pubmed/1826546

    Google Scholar 

  8. M.A. Falconer, M. McGeorge, A.C. Begg, Surgery of lumbar intervertebral disk protrusion a study of principles and results based upon one hundred consecutive cases submitted to operation. Br. J. Surg. 35(139), 225–249 (1948). https://doi.org/10.1002/bjs.18003513902

    Article  Google Scholar 

  9. C. Hirsch, An attempt to diagnose the level of a disc lesion clinically by disc puncture. Acta Orthop. Scand. 18(1–4), 132–140 (1948). https://doi.org/10.3109/17453674908988964

    Article  Google Scholar 

  10. C. Hirsch, B.-E. Ingelmark, M. Miller, The anatomical basis for low back pain: studies on the presence of sensory nerve endings in ligamentous, capsular and intervertebral disc structures in the human lumbar spine. Acta Orthop. Scand. 33(1–4), 1–17 (1963). https://doi.org/10.3109/17453676308999829

    Article  Google Scholar 

  11. P. Suthar, R. Patel, C. Mehta, N. Patel, MRI evaluation of lumbar disc degenerative disease. J. Clin. Diagn. Res. 9(4), TC04–TC09 (2015). https://doi.org/10.7860/JCDR/2015/11927.5761

    Article  Google Scholar 

  12. M.A. Adams, Basic science of spinal degeneration. Surgery (Oxford) 30(7), 347–350 (2012). https://doi.org/10.1016/j.mpsur.2012.05.003

    Article  Google Scholar 

  13. J.F. Griffith, Y.-X.J. Wang, G.E. Antonio, K.C. Choi, A. Yu, A.T. Ahuja, P.C. Leung, Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 32(24), E708–E712 (2007). https://doi.org/10.1097/BRS.0b013e31815a59a0

    Article  Google Scholar 

  14. N. Inoue, A.A. Espinoza Orías, Biomechanics of intervertebral disk degeneration. Orthop. Clin. North Am. 42(4), 487–499 (2011). https://doi.org/10.1016/j.ocl.2011.07.001

    Article  Google Scholar 

  15. C.W. Pfirrmann, A. Metzdorf, M. Zanetti, J. Hodler, N. Boos, Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(1), 1873–1878 (2001). http://ovidsp.uk.ovid.com/sp-3.29.0b/ovidweb.cgi?QS2=434f4e1a73d37e8c1cc07622d116f5518708e831a67563782792778585912c423b083b35cc598ff51ea2c322ca5410c8cb97bfde3ae14188fb2fff5595e5fc205ba8d9168f76c77e4521176a20f8fe0b6d8acfb83b72d7f4b0e8e55fe70a2cbe69414ea203

    Article  Google Scholar 

  16. J.P.G. Urban, S. Roberts, Degeneration of the intervertebral disc. Arthritis Res. Ther. 5(3), 120–130 (2003). https://doi.org/10.1186/AR629

    Article  Google Scholar 

  17. D.F. Fardon, A.L. Williams, E.J. Dohring, F.R. Murtagh, S.L. Gabriel Rothman, G.K. Sze, Lumbar disc nomenclature: version 2.0: recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. Spine J. 14(11), 2525–2545 (2014). https://doi.org/10.1016/j.spinee.2014.04.022

    Article  Google Scholar 

  18. G.D. Cramer, S.A. Darby, Clinical Anatomy of the Spine, Spinal Cord, and ANS (Elsevier Health Sciences, 2014)

    Google Scholar 

  19. R.N. Massa, F.B. Mesfin, Herniation, Disc. StatPearls (StatPearls Publishing, 2018), http://www.ncbi.nlm.nih.gov/pubmed/28722852

  20. S.J. Atlas, R.A. Deyo, R.B. Keller, A.M. Chapin, D.L. Patrick, J.M. Long, D.E. Singer, The maine lumbar spine study, part II. 1-year outcomes of surgical and nonsurgical management of sciatica. Spine 21(15), 1777–1786 (1996). http://www.ncbi.nlm.nih.gov/pubmed/8855462

    Article  Google Scholar 

  21. S.J. Atlas, R.B. Keller, Y. Chang, R.A. Deyo, D.E. Singer, Surgical and nonsurgical management of sciatica secondary to a lumbar disc herniation: five-year outcomes from the maine lumbar spine study. Spine 26(10), 1179–1187 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11413434

    Article  Google Scholar 

  22. S.J. Atlas, R.B. Keller, Y.A. Wu, R.A. Deyo, D.E. Singer, Long-term outcomes of surgical and nonsurgical management of sciatica secondary to a lumbar disc herniation: 10 year results from the maine lumbar spine study. Spine 30(8), 927–935 (2005). http://www.ncbi.nlm.nih.gov/pubmed/15834338

    Article  Google Scholar 

  23. M. Gugliotta, B.R. da Costa, E. Dabis, R. Theiler, P. Jüni, S. Reichenbach, H. Landolt, P. Hasler, Surgical versus conservative treatment for lumbar disc herniation: a prospective cohort study. BMJ Open 6(12), e012938 (2016). https://doi.org/10.1136/bmjopen-2016-012938

    Article  Google Scholar 

  24. W.C.H. Jacobs, M. van Tulder, M. Arts, S.M. Rubinstein, M. van Middelkoop, R. Ostelo, A. Verhagen, B. Koes, W.C. Peul, Surgery versus conservative management of sciatica due to a lumbar herniated disc: a systematic review. Eur. Spine J. 20(4), 513–522 (2011). https://doi.org/10.1007/s00586-010-1603-7

    Article  Google Scholar 

  25. R.B. Keller, S.J. Atlas, D.E. Singer, A.M. Chapin, N.A. Mooney, D.L. Patrick, R.A. Deyo, The maine lumbar spine study, Part I. background and concepts. Spine 21(15), 1769–1776 (1996). http://www.ncbi.nlm.nih.gov/pubmed/8855461

    Article  Google Scholar 

  26. J.D. Lurie, S.C. Faucett, B. Hanscom, T.D. Tosteson, P.A. Ball, W.A. Abdu, J.W. Frymoyer, J.N. Weinstein, Lumbar Discectomy Outcomes Vary by Herniation Level in the Spine Patient Outcomes Research Trial. J. Bone Joint Surg. Am. 90(9), 1811–1819 (2008). https://doi.org/10.2106/JBJS.G.00913

    Article  Google Scholar 

  27. J.A. Rihn, A.S. Hilibrand, K. Radcliff, M. Kurd, J. Lurie, E. Blood, T.J. Albert, J.N. Weinstein, Duration of Symptoms Resulting from Lumbar Disc Herniation: Effect on Treatment Outcomes: Analysis of the Spine Patient Outcomes Research Trial (SPORT). J. Bone Joint Surg. Am. 93(20), 1906–1914 (2011). https://doi.org/10.2106/JBJS.J.00878

    Article  Google Scholar 

  28. A.J. Schoenfeld, J.D. Lurie, W. Zhao, C.M. Bono, The effect of race on outcomes of surgical or nonsurgical treatment of patients in the Spine Patient Outcomes Research Trial (SPORT). Spine 37(17), 1505–1515 (2012). https://doi.org/10.1097/BRS.0b013e318251cc78

    Article  Google Scholar 

  29. A.J. Schoenfeld, B.K. Weiner, Treatment of lumbar disc herniation: evidence-based practice. Int. J. Gen. Med. 3(July), 209–214 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20689695

    Google Scholar 

  30. A.N.A. Tosteson, T.D. Tosteson, J.D. Lurie, W. Abdu, H. Herkowitz, G. Andersson, T. Albert, et al., Comparative effectiveness evidence from the spine patient outcomes research trial: surgical versus nonoperative care for spinal stenosis, degenerative spondylolisthesis, and intervertebral disc herniation. Spine 36(24), 2061–2068 (2011). https://doi.org/10.1097/BRS.0b013e318235457b

    Article  Google Scholar 

  31. H. Weber, Lumbar disc herniation. a controlled, prospective study with ten years of observation. Spine 8(2), 131–140 (1983). http://www.ncbi.nlm.nih.gov/pubmed/6857385

    Article  Google Scholar 

  32. J.N. Weinstein, J.D. Lurie, T.D. Tosteson, J.S. Skinner, B. Hanscom, A.N.A. Tosteson, H. Herkowitz, et al., Surgical vs nonoperative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT) observational cohort. JAMA 296(20), 2451–2459 (2006). https://doi.org/10.1001/jama.296.20.2451

    Article  Google Scholar 

  33. J.N. Weinstein, J.D. Lurie, T.D. Tosteson, A.N.A. Tosteson, E.A. Blood, W.A. Abdu, H. Herkowitz, A. Hilibrand, T. Albert, J. Fischgrund, Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine 33(25), 2789–2800 (2008). https://doi.org/10.1097/BRS.0b013e31818ed8f4

    Article  Google Scholar 

  34. J.N. Weinstein, T.D. Tosteson, J.D. Lurie, A. Tosteson, E. Blood, H. Herkowitz, F. Cammisa, et al., Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the spine patient outcomes research trial. Spine 35(14), 1329–1338 (2010). https://doi.org/10.1097/BRS.0b013e3181e0f04d

    Article  Google Scholar 

  35. J.N. Weinstein, T.D. Tosteson, J.D. Lurie, A.N.A. Tosteson, B. Hanscom, J.S. Skinner, W.A. Abdu, A.S. Hilibrand, S.D. Boden, R.A. Deyo, Surgical vs nonoperative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT): a randomized trial. JAMA 296(20), 2441–2450 (2006). https://doi.org/10.1001/jama.296.20.2441

    Article  Google Scholar 

  36. E.J. Carragee, M.Y. Han, P.W. Suen, D. Kim, Clinical outcomes after lumbar discectomy for sciatica: the effects of fragment type and anular competence. J. Bone Joint Surg. Am. 85–A(1), 102–108 (2003). http://www.ncbi.nlm.nih.gov/pubmed/12533579

    Article  Google Scholar 

  37. N. Lange, B. Meyer, E. Shiban, Symptomatic annulus-repair-device loosening due to a low-grade infection. Acta Neurochir. 160(1), 199–203 (2018). https://doi.org/10.1007/s00701-017-3371-1

    Article  Google Scholar 

  38. T. Lee, T.-H. Lim, S.-H. Lee, J.-H. Kim, J. Hong, Biomechanical function of a balloon nucleus pulposus replacement system: a human cadaveric spine study. J. Orthop. Res. 36(1), 167–173 (2017). https://doi.org/10.1002/jor.23607

    Article  Google Scholar 

  39. R.D. Bowles, L.A. Setton, Biomaterials for Intervertebral Disc Regeneration and Repair. Biomaterials 129(June), 54–67 (2017). https://doi.org/10.1016/J.BIOMATERIALS.2017.03.013

    Article  Google Scholar 

  40. J.M. Cloyd, N.R. Malhotra, L. Weng, W. Chen, R.L. Mauck, D.M. Elliott, Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur. Spine J. 16(11), 1892–1898 (2007). https://doi.org/10.1007/s00586-007-0443-6

    Article  Google Scholar 

  41. P. Roughley, C. Hoemann, E. DesRosiers, F. Mwale, J. Antoniou, M. Alini, The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 27(3), 388–396 (2006). https://doi.org/10.1016/J.BIOMATERIALS.2005.06.037

    Article  Google Scholar 

  42. A.A. Thorpe, G. Dougill, L. Vickers, N.D. Reeves, C. Sammon, G. Cooper, C.L. Le Maitre, Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function. Acta Biomater. 54(May), 212–226 (2017). https://doi.org/10.1016/J.ACTBIO.2017.03.010

    Article  Google Scholar 

  43. B.D. Ahlgren, W. Lui, H.N. Herkowitz, M.M. Panjabi, J.P. Guiboux, Effect of anular repair on the healing strength of the intervertebral disc: a sheep model. Spine 25(17), 2165–2170 (2000). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=10973397

    Article  Google Scholar 

  44. A. Bartlett, L. Wales, R. Houfburg, W.K. Durfee, S.L. Griffith, I. Bentley, A. Bartlett, et al., Optimizing the effectiveness of a mechanical suture-based anulus fibrosus repair construct in an acute failure laboratory simulation. J. Spinal Disord. Tech. 26(7), 393–399 (2013). https://doi.org/10.1097/BSD.0b013e31824c8224

    Article  Google Scholar 

  45. A.H. Bateman, C. Balkovec, M.K. Akens, A.H.W.W. Chan, R.D. Harrison, W. Oakden, A.J.M.M. Yee, S.M. McGill, Closure of the annulus fibrosus of the intervertebral disc using a novel suture application device—in vivo porcine and ex vivo biomechanical evaluation. Spine J. 16(7), 889–895 (2016). https://doi.org/10.1016/j.spinee.2016.03.005

    Article  Google Scholar 

  46. C.-J. Chiang, C.-K. Cheng, J.-S. Sun, C.-J. Liao, Y.-H. Wang, Y.-H. Tsuang, The effect of a new anular repair after discectomy in intervertebral disc degeneration: an experimental study using a porcine spine model. Spine 36(10), 761–769 (2011). https://doi.org/10.1097/BRS.0b013e3181e08f01

    Article  Google Scholar 

  47. Y.-F. Chiang, C.-J. Chiang, C.-H. Yang, Z.-C. Zhong, C.-S. Chen, C.-K. Cheng, Y.-H. Tsuang, Retaining intradiscal pressure after annulotomy by different annular suture techniques, and their biomechanical evaluations. Clin. Biomech. 27(3), 241–248 (2012). https://doi.org/10.1016/j.clinbiomech.2011.09.008

    Article  Google Scholar 

  48. F. Heuer, S. Ulrich, L. Claes, H.-J. Wilke, Biomechanical evaluation of conventional anulus fibrosus closure methods required for nucleus replacement. laboratory investigation. journal of neurosurgery. Spine 9(3), 307–313 (2008). https://doi.org/10.3171/SPI/2008/9/9/307

    Article  Google Scholar 

  49. L. Qi, M. Li, H. Si, L. Wang, Y. Jiang, S. Zhang, The Clinical application of ‘jetting suture’ technique in annular repair under microendoscopic discectomy: a prospective single-cohort observational study. Medicine (United States) 95(31), e4503 (2016). https://doi.org/10.1097/MD.0000000000004503

    Article  Google Scholar 

  50. M.N. Melkerson, Xclose Tissue Repair System 510(k) Premarket Notification (2009), https://www.accessdata.fda.gov/cdrh_docs/pdf9/K091432.pdf

  51. M.N. Melkerson, Inclose Surgical Mesh System 510(K) Summary of Safety and Effectiveness (2005), https://www.accessdata.fda.gov/cdrh_docs/pdf5/K050969.pdf

  52. P. Grunert, B.H. Borde, S.B. Towne, Y. Moriguchi, K.D. Hudson, L.J. Bonassar, R. Härtl, Riboflavin crosslinked high-density collagen gel for the repair of annular defects in intervertebral discs: an in vivo study. Acta Biomater. 26, 215–224 (2015). https://doi.org/10.1016/j.actbio.2015.06.006

    Article  Google Scholar 

  53. C.C. Guterl, O.M. Torre, D. Purmessur, K. Dave, M. Likhitpanichkul, A.C. Hecht, S.B. Nicoll, J.C. Iatridis, Characterization of mechanics and cytocompatibility of fibrin-genipin annulus fibrosus sealant with the addition of cell adhesion molecules. Tissue Eng. A 20(17–18), 2536–2545 (2014). https://doi.org/10.1089/ten.tea.2012.0714

    Article  Google Scholar 

  54. M. Likhitpanichkul, M. Dreischarf, S. Illien-Junger, B.A. Walter, T. Nukaga, R.G. Long, D. Sakai, A.C. Hecht, J.C. Iatridis, Fibrin-genipin adhesive hydrogel for annulus fibrosus repair: performance evaluation with large animal organ culture, in situ biomechanics, and in vivo degradation tests. Eur. Cell Mater. 28, 25–28 (2014). http://www.ecmjournal.org/journal/papers/vol028/pdf/v028a03.pdf

    Article  Google Scholar 

  55. P. Grunert, B. Borde, M. Macielak, K. Hudson, M. Alimi, L. Bonassar, P. Grunert, et al., Annular repair using high density collagen gel: in vivo outcome in a rodent spine model. Spine J. 13(9 SUPPL. 1), 51S (2013). https://doi.org/10.1016/j.spinee.2013.07.152

    Article  Google Scholar 

  56. P.-P.A. Vergroesen, A.I. Bochyn Ska, K.S. Emanuel, S. Sharifi, I. Kingma, D.W. Grijpma, T.H. Smit, A biodegradable glue for annulus closure: evaluation of strength and endurance. Spine 40(9), 622–628 (2015). https://doi.org/10.1097/BRS.0000000000000792

    Article  Google Scholar 

  57. M.A. Cruz, S. McAnany, N. Gupta, R.G. Long, P. Nasser, D. Eglin, A.C. Hecht, S. Illien-Junger, J.C. Iatridis, Structural and chemical modification to improve adhesive and material properties of fibrin-genipin for repair of annulus fibrosus defects in intervertebral disks. J. Biomech. Eng. 139(8), 0845011–0845017 (2017). https://doi.org/10.1115/1.4036623

    Article  Google Scholar 

  58. M. Likhitpanichkul, Y. Kim, O.M. Torre, E. See, Z. Kazezian, A. Pandit, A.C. Hecht, J.C. Iatridis, Fibrin-genipin annulus fibrosus sealant as a delivery system for anti-TNFα drug. Spine J. 15(9), 2045–2054 (2015). https://doi.org/10.1016/j.spinee.2015.04.026

    Article  Google Scholar 

  59. R. Kang, H. Li, H. Lysdahl, D. Quang Svend Le, M. Chen, L. Xie, Cyanoacrylate medical glue application in intervertebral disc annulus defect repair: mechanical and biocompatible evaluation. J. Biomed. Mater. Res. B Appl. Biomater. 105(1), 14–20 (2017). https://doi.org/10.1002/jbm.b.33524

    Article  Google Scholar 

  60. J.L. Bron, A.J. Van Der Veen, M.N. Helder, B.J. Van Royen, T.H. Smit, Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model. Eur. Spine J. 19(8), 1347–1355 (2010). https://doi.org/10.1007/s00586-010-1384-z

    Article  Google Scholar 

  61. T.K. Chik, X.Y. Ma, T.H. Choy, Y.Y. Li, H.J. Diao, W.K. Teng, S.J. Han, K.M.C. Cheung, B.P. Chan, Photochemically crosslinked collagen annulus plug: a potential solution solving the leakage problem of cell-based therapies for disc degeneration. Acta Biomater. 9(9), 8128–8139 (2013). https://doi.org/10.1016/j.actbio.2013.05.034

    Article  Google Scholar 

  62. E.H. Ledet, W. Jeshuran, J.C. Glennon, C. Shaffrey, P. De Deyne, C. Belden, B. Kallakury, A.L. Carl, Small intestinal submucosa for anular defect closure: long-term response in an in vivo sheep model. Spine 34(14), 1457–1463 (2009). https://doi.org/10.1097/BRS.0b013e3181a48554

    Article  Google Scholar 

  63. D.A. Wong, L. Mauter, V. Murdock, C.J. Wong, Variations in Anular Defect characteristics in herniated lumbar discs: a feasibility study of anular repair and an attempt to confirm carragee population data on defect size. Spine J. 10(9), S47 (2010). https://doi.org/10.1016/j.spinee.2010.07.129

    Article  Google Scholar 

  64. S. Sharifi, S.K. Bulstra, D.W. Grijpma, R. Kuijer, Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. J. Tissue Eng. Regen. Med. 9(10), 1120–1132 (2015). https://doi.org/10.1002/term.1866

    Article  Google Scholar 

  65. A. Bailey, A. Araghi, S. Blumenthal, G.V. Huffmon, Anular Repair Clinical Study Group, Prospective, multicenter, randomized, controlled study of anular repair in lumbar discectomy: two-year follow-up. Spine 38(14), 1161–1169 (2013). https://doi.org/10.1097/BRS.0b013e31828b2e2f. [Erratum appears in Spine (Phila Pa 1976). 2013 Aug 1;38(17):1527]

    Article  Google Scholar 

  66. B. Borde, P. Grunert, R. Härtl, L.J. Bonassar, Injectable, high-density collagen gels for annulus fibrosus repair: an in vitro rat tail model. J. Biomed. Mater. Res. A 103(8), 2571–2581 (2015). https://doi.org/10.1002/jbm.a.35388

    Article  Google Scholar 

  67. B. Pennicooke, I. Hussain, C. Berlin, S.R. Sloan, B. Borde, Y. Moriguchi, G. Lang, et al., Annulus fibrosus repair using high-density collagen gel: an in vivo ovine model. Spine 43(4), E208–E215 (2017). https://doi.org/10.1097/BRS.0000000000002334

    Article  Google Scholar 

  68. R.G. Long, O.M. Torre, W.W. Hom, D.J. Assael, J.C. Iatridis, Design requirements for annulus fibrosus repair: review of forces, displacements, and material properties of the intervertebral disk and a summary of candidate hydrogels for repair. J. Biomech. Eng. 138(2), 021007 (2016). https://doi.org/10.1115/1.4032353

    Article  Google Scholar 

  69. C. Wiltsey, T. Christiani, J. Williams, J. Scaramazza, C. Van Sciver, K. Toomer, J. Sheehan, et al., thermogelling bioadhesive scaffolds for intervertebral disk tissue engineering: preliminary in vitro comparison of aldehyde-based versus alginate microparticle-mediated adhesion. Acta Biomater. 16(April), 71–80 (2015). https://doi.org/10.1016/j.actbio.2015.01.025

    Article  Google Scholar 

  70. B. Akgun, S. Ozturk, H. Cakin, M. Kaplan, Migration of fragments into the spinal canal after intervertebral polyethylene glycol implantation: an extremely rare adverse effect. J. Neurosurg. Spine 21(4), 614–616 (2014). https://doi.org/10.3171/2014.6.SPINE13855

    Article  Google Scholar 

  71. N.L. Nerurkar, B.M. Baker, S. Sen, E.E. Wible, D.M. Elliott, R.L. Mauck, Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat. Mater. 8(12), 986–992 (2009). https://doi.org/10.1038/nmat2558

    Article  Google Scholar 

  72. U. Boudriot, R. Dersch, A. Greiner, J.H. Wendorff, Electrospinning approaches toward scaffold engineering: a brief overview. Artif. Organs 30(10), 785–792 (2006). https://doi.org/10.1111/j.1525-1594.2006.00301.x

    Article  Google Scholar 

  73. N. Wismer, S. Grad, G. Fortunato, S.J. Ferguson, M. Alini, D. Eglin, Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro. Tissue Eng. A 20(3-4), 672–682 (2014). https://doi.org/10.1089/ten.tea.2012.0679

    Article  Google Scholar 

  74. L. Koepsell, T. Remund, J. Bao, D. Neufeld, H. Fong, Y. Deng, Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. J. Biomed. Mater. Res. A 99A(4), 564–575 (2011). https://doi.org/10.1002/jbm.a.33216

    Article  Google Scholar 

  75. L. Koepsell, L. Zhang, D. Neufeld, H. Fong, Y. Deng, Electrospun nanofibrous polycaprolactone scaffolds for tissue engineering of annulus fibrosus. Macromol. Biosci. 11(3), 391–399 (2011). https://doi.org/10.1002/mabi.201000352

    Article  Google Scholar 

  76. N.L. Nerurkar, D.M. Elliott, R.L. Mauck, Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J. Orthop. Res. 25(8), 1018–1028 (2007). https://doi.org/10.1002/jor.20384

    Article  Google Scholar 

  77. F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010). https://doi.org/10.1016/J.BIOMATERIALS.2010.04.050

    Article  Google Scholar 

  78. S.B. Blanquer, A.W. Gebraad, S. Miettinen, A.A. Poot, D.W. Grijpma, S.P. Haimi, Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography. J. Tissue Eng. Regen. Med. 11(10), 2752–2762 (2017). https://doi.org/10.1002/term.2170

    Article  Google Scholar 

  79. Z. Li, T. Pirvu, L.M. Benneker, S.B.G. Blanquer, D.W. Grijpma, M. Alini, D. Eglin, A combined cellular and biomaterial approach for restoration of disc height and prevention of degeneration in annulotomized disc. Eur. Spine J. 9, 2501 (2014). https://doi.org/10.1007/s00586-014-3600-8

    Article  Google Scholar 

  80. M. Hospodiuk, M. Dey, D. Sosnoski, I.T. Ozbolat, The bioink: a comprehensive review on bioprintable materials. Biotechnol. Adv. 35(2), 217–239 (2017). https://doi.org/10.1016/J.BIOTECHADV.2016.12.006

    Article  Google Scholar 

  81. J.B. Costa, J. Silva-Correia, V.P. Ribeiro, A. da Silva Morais, J.M. Oliveira, R.L. Reis, Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc. Mater. Today Commun. 19, 506–512 (2018). https://doi.org/10.1016/j.mtcomm.2018.01.011

    Article  Google Scholar 

  82. S.R. Sloan, D. Galesso, C. Secchieri, C. Berlin, R. Hartl, L.J. Bonassar, Initial investigation of individual and combined annulus fibrosus and nucleus pulposus repair ex vivo. Acta Biomater. 59, 192–199 (2017). https://doi.org/10.1016/j.actbio.2017.06.045

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Alcántara Guardado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alcántara Guardado, A., Cooper, G. (2021). Low Back Pain: Additive Manufacturing for Disc Degeneration and Herniation Repair. In: Bidanda, B., Bártolo, P.J. (eds) Virtual Prototyping & Bio Manufacturing in Medical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35880-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35880-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35879-2

  • Online ISBN: 978-3-030-35880-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics