Skip to main content

A Review of Hybrid Biomanufacturing Systems Applied in Tissue Regeneration

  • Chapter
  • First Online:
Virtual Prototyping & Bio Manufacturing in Medical Applications

Abstract

Scaffold-based approach is a developed strategy in biomanufacturing, which is based on the use of temporary scaffold that performs as a house of implanted cells for their attachment, proliferation, and differentiation. This strategy strongly depends on both materials and manufacturing processes. However, single material is very difficult to meet all the requirements such as biocompatibility, biodegradability, mechanical strength, and promotion of cell adhesion. No single bioprinting technique currently can meet the requirements for all scales tissue regeneration. Thus, multi-material and mixing-material scaffolds have been greatly investigated. Challenges in terms of resolution, uniform cell distribution, and tissue formation are still severe in the field of bioprinting technique development. Hybrid bioprinting techniques have been developed to print scaffolds with improved properties in both mechanical and biological aspects for broad biomedical engineering applications. In this review, we introduce the basic multi-head bioprinters, semi-hybrid and fully hybrid biomanufacturing systems, highlighting the introduced modifications, improved properties, and the effect on the complex tissue regeneration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.R. Hakeem, R. Dave, K.R. Prasad, K.V. Menon, A. Lewington, B. Fernando, H. Sanfey, N. Ahmad, An imperative need to change organ donation and transplant curriculum results of a nationwide United Kingdom junior doctor survey. Transplantation 99, 771–785 (2015)

    Article  Google Scholar 

  2. G. Webb, N. Phillips, S. Reddiford, J. Neuberger, Factors affecting the decision to grant consent for organ donation: a survey of adults in England. Transplantation 99, 1396–1402 (2015)

    Article  Google Scholar 

  3. R.S. Langer, J.P. Vacanti, Tissue engineering: the challenges ahead. Sci. Am. 280, 86–89 (1999)

    Article  Google Scholar 

  4. F.J. O’brien, Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88–95 (2011)

    Article  Google Scholar 

  5. D.F. Williams, On the nature of biomaterials. Biomaterials 30, 5897–5909 (2009)

    Article  Google Scholar 

  6. R. Pereira, P. BÁrtolo, Recent Advances in Additive Biomanufacturing (Elsevier, Amsterdam, 2014)

    Book  Google Scholar 

  7. R.F. Pereira, A. Sousa, C.C. Barrias, A. Bayat, P.L. Granja, P.J. BÁrtolo, Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanufact. Rev. 2, 1 (2017)

    Article  Google Scholar 

  8. C. Vyas, R. Pereira, B. Huang, F. Liu, W. Wang, P. Bartolo, Engineering the vasculature with additive manufacturing. Curr. Opin. Biomed. Eng. 2, 1–13 (2017)

    Article  Google Scholar 

  9. F.P. Melchels, M.A. Domingos, T.J. Klein, J. Malda, P.J. Bartolo, D.W. Hutmacher, Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079–1104 (2012)

    Article  Google Scholar 

  10. C. Mota, D. Puppi, F. Chiellini, E. Chiellini, Additive manufacturing techniques for the production of tissue engineering constructs. J. Tissue Eng. Regen. Med. 9, 174–190 (2015)

    Article  Google Scholar 

  11. S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014)

    Article  Google Scholar 

  12. S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong, M. Xing, 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Mater. 3, 144–156 (2018)

    Article  Google Scholar 

  13. U. Jammalamadaka, K. Tappa, Recent advances in biomaterials for 3D printing and tissue engineering. J. Funct. Biomater. 9, 22 (2018)

    Article  Google Scholar 

  14. C. Vyas, G. Poologasundarampillai, J. Hoyland, P. Bartolo, 3D printing of biocomposites for osteochondral tissue engineering, in Biomedical Composites, 2nd edn. (Elsevier, Amsterdam, 2017)

    Google Scholar 

  15. P. Calvert, Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001)

    Article  Google Scholar 

  16. C.C. Dodoo, P. Stapleton, S. Gaisford, Effect on Thermal Ink-jet Printing on Bacterial Cells, in Nip & Digital Fabrication Conference (Society for Imaging Science and Technology, Springfield, 2016), pp. 402–405

    Google Scholar 

  17. T. Zhang, K.C. Yan, L. Ouyang, W. Sun, Mechanical characterization of bioprinted in vitro soft tissue models. Biofabrication 5, 045010 (2013)

    Article  Google Scholar 

  18. A.D. Graham, S.N. Olof, M.J. Burke, J.P. Armstrong, E.A. Mikhailova, J.G. Nicholson, S.J. Box, F.G. Szele, A.W. Perriman, H. Bayley, High-resolution patterned cellular constructs by droplet-based 3D printing. Sci. Rep. 7, 7004 (2017)

    Article  Google Scholar 

  19. T. Villwock. Magnetic Fluid Suitable for High Speed and High Resolution Dot-on-Demand Inkjet Printing and Method of Making. Google Patents, 2012

    Google Scholar 

  20. X. Wang, Q. Ao, X. Tian, J. Fan, Y. Wei, W. Hou, H. Tong, S. Bai, 3D bioprinting technologies for hard tissue and organ engineering. Materials 9, 802 (2016)

    Article  Google Scholar 

  21. B. Huang, G. Caetano, C. Vyas, J. Blaker, C. Diver, P. BÁrtolo, Polymer-ceramic composite scaffolds: The effect of hydroxyapatite and β-tri-calcium phosphate. Materials 11, 129 (2018)

    Article  Google Scholar 

  22. A.E. Jakus, R. Shah, Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J. Biomed. Mater. Res. A 105, 274–283 (2017)

    Article  Google Scholar 

  23. H.-W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016)

    Article  Google Scholar 

  24. X. Qi, P. Pei, M. Zhu, X. Du, C. Xin, S. Zhao, X. Li, Y. Zhu, Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo. Sci. Rep. 7, 42556 (2017)

    Article  Google Scholar 

  25. W. Wang, G. Caetano, W.S. Ambler, J.J. Blaker, M.A. Frade, P. Mandal, C. Diver, P. BÁrtolo, Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9, 992 (2016)

    Article  Google Scholar 

  26. A. Blaeser, D.F. Duarte Campos, U. Puster, W. Richtering, M.M. Stevens, H. Fischer, Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv. Healthc. Mater. 5, 326–333 (2016)

    Article  Google Scholar 

  27. A. Bellini, Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design (Drexel University, Philadelphia, 2002)

    Google Scholar 

  28. H. Almeida, P. Bartolo, C. Mota, A. Mateus, N. Ferreira, M. Domingos, Processo e equipamento de fabrico rápido por bioextrusao. Portuguese Patent Application 104247, 2010

    Google Scholar 

  29. F. Liu, C. Vyas, G. Poologasundarampillai, I. Pape, S. Hinduja, W. Mirihanage, P. Bartolo, Structural evolution of PCL during melt extrusion 3D printing. Macromol. Mater. Eng. 303(2), 1700494 (2018)

    Article  Google Scholar 

  30. F. Liu, C. Vyas, G. Poologasundarampollai, I. Pape, S. Hinduja, W. Mirihanage, P. Bartolo, Process driven microstructure control in melt-extrusion based 3D printing for tailorable mechanical properties in a filament. Macromol. Mater. Eng. 303(8), 1800173 (2018)

    Article  Google Scholar 

  31. R.J. Mondschein, A. Kanitkar, C.B. Williams, S.S. Verbridge, T.E. Long, Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140, 170 (2017)

    Article  Google Scholar 

  32. N.A. Sears, D.R. Seshadri, P.S. Dhavalikar, E. Cosgriff-Hernandez, A review of three-dimensional printing in tissue engineering. Tissue Eng. Part B Rev. 22, 298–310 (2016)

    Article  Google Scholar 

  33. J. Bohandy, B. Kim, F. Adrian, Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60, 1538–1539 (1986)

    Article  Google Scholar 

  34. N.R. Schiele, D.T. Corr, Y. Huang, N.A. Raof, Y. Xie, D.B. Chrisey, Laser-based direct-write techniques for cell printing. Biofabrication 2, 032001 (2010)

    Article  Google Scholar 

  35. D.J. Odde, M.J. Renn, Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 17(10), 385–389 (1999)

    Article  Google Scholar 

  36. J.-M. Bourget, O. Kérourédan, M. Medina, M. Rémy, N.B. Thébaud, R. Bareille, O. Chassande, J. Amédée, S. Catros, R. Devillard, Patterning of endothelial cells and mesenchymal stem cells by laser-assisted bioprinting to study cell migration. Biomed. Res. Int. 2016, 3569843 (2016)

    Article  Google Scholar 

  37. V. Keriquel, H. Oliveira, M. Rémy, S. Ziane, S. Delmond, B. Rousseau, S. Rey, S. Catros, J. Amédée, F. Guillemot, In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 7, 1778 (2017)

    Article  Google Scholar 

  38. P. Datta, B. Ayan, I.T. Ozbolat, Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 51, 1 (2017)

    Article  Google Scholar 

  39. A. Blaeser, N. Million, D.F.D. Campos, L. Gamrad, M. KÖpf, C. Rehbock, M. Nachev, B. Sures, S. Barcikowski, H. Fischer, Laser-based in situ embedding of metal nanoparticles into bioextruded alginate hydrogel tubes enhances human endothelial cell adhesion. Nano Res. 9, 3407–3427 (2016)

    Article  Google Scholar 

  40. Z. Wang, X. Jin, R. Dai, J.F. Holzman, K. Kim, An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Adv. 6, 21099–21104 (2016)

    Article  Google Scholar 

  41. A.B. Dababneh, I.T. Ozbolat, Bioprinting technology: A current state-of-the-art review. J. Manuf. Sci. Eng. 136, 061016 (2014)

    Article  Google Scholar 

  42. L.E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A.L. Cristino, G. Barabaschi, D. Demarchi, M.R. Dokmeci, Y. Yang, Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14, 2202–2211 (2014)

    Article  Google Scholar 

  43. R. Landers, R. MÜlhaupt, Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol. Mater. Eng. 282, 17–21 (2000)

    Article  Google Scholar 

  44. J. Lee, K.E. Kim, S. Bang, I. Noh, C. Lee, A desktop multi-material 3D bio-printing system with open-source hardware and software. Int. J. Precis. Eng. Manuf. 18, 605–612 (2017)

    Article  Google Scholar 

  45. J.Y. Kim, D.-W. Cho, Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron. Eng. 86, 1447–1450 (2009)

    Article  Google Scholar 

  46. C. Liu, Z. Xia, Z. Han, P. Hulley, J. Triffitt, J. Czernuszka, Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 85(2), 519–528 (2008)

    Article  Google Scholar 

  47. C. Norotte, F.S. Marga, L.E. Niklason, G. Forgacs, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30, 5910–5917 (2009)

    Article  Google Scholar 

  48. J.B. Robbins, V. Gorgen, P. Min, B.R. Shepherd, S.C. Presnell, A novel in vitro three-dimensional bioprinted liver tissue system for drug development. FASEB J. 27, 812 (2013)

    Article  Google Scholar 

  49. F. Marga, K. Jakab, C. Khatiwala, B. Shephard, S. Dorfman, G. Forgacs, Organ printing: a novel tissue engineering paradigm, in 5th European Conference of the International Federation for Medical and Biological Engineering (Springer, Berlin, 2011), pp. 27–30

    Google Scholar 

  50. F. Marga, K. Jakab, C. Khatiwala, B. Shepherd, S. Dorfman, B. Hubbard, S. Colbert, G. Forgacs, Toward engineering functional organ modules by additive manufacturing. Biofabrication 4, 022001 (2012)

    Article  Google Scholar 

  51. G. Edwin, B. Emilie, H. Edward, S. Koen, P. Sharon, H. Deborah, Three-Dimensional (3D) Bone Tissues Derived from Stem Cells as a Novel Model for Mineralization, in Stem Cell meeting on the Mesa, La Jolia, CA (2014)

    Google Scholar 

  52. R. Ilagan, S. Rapoport, B. Shepherd, S. Presnell, Tissue engineering through additive manufacturing: hope for a bioengineered kidney? in Kidney Development, Disease, Repair and Regeneration (Elsevier, Amsterdam, 2016)

    Google Scholar 

  53. S.M. King, S.C. Presnell, D.G. Nguyen, Development of 3D Bioprinted Human Breast Cancer for In Vitro Drug Screening (AACR, Philadelphia, 2014)

    Google Scholar 

  54. P.L. Lewis, R.N. Shah, 3D printing for liver tissue engineering: Current approaches and future challenges. Curr. Transplantation Rep. 3, 100–108 (2016)

    Article  Google Scholar 

  55. A. Peloso, R. Tamburrini, L. Edgar, B. Wilm, R. Katari, L. Perin, P. Murray, G. Orlando, Extracellular matrix scaffolds as a platform for kidney regeneration. Eur. J. Pharmacol. 790, 21–27 (2016)

    Article  Google Scholar 

  56. E.M. Langer, B.L. Allen-Petersen, S.M. King, N.D. Kendsersky, M.A. Turnidge, G.M. Kuziel, R. Riggers, R. Samatham, T.S. Amery, S.L. Jacques, Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep. 26, 608–623. e6 (2019)

    Article  Google Scholar 

  57. F. You, X. Wu, N. Zhu, M. Lei, B.F. Eames, X. Chen, 3D printing of porous cell-laden hydrogel constructs for potential applications in cartilage tissue engineering. ACS Biomater. Sci. Eng. 2, 1200–1210 (2016)

    Article  Google Scholar 

  58. J.Y. Kim, J.J. Yoon, E.K. Park, D.S. Kim, S.-Y. Kim, D.-W. Cho, Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system. Biofabrication 1, 015002 (2009)

    Article  Google Scholar 

  59. J.-H. Shim, J.Y. Kim, M. Park, J. Park, D.-W. Cho, Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3(3), 034102 (2011)

    Article  Google Scholar 

  60. J.Y. Kim, G.-Z. Jin, I.S. Park, J.-N. Kim, S.Y. Chun, E.K. Park, S.-Y. Kim, J. Yoo, S.-H. Kim, J.-W. Rhie, Evaluation of solid free-form fabrication-based scaffolds seeded with osteoblasts and human umbilical vein endothelial cells for use in vivo osteogenesis. Tissue Eng. A 16, 2229–2236 (2010)

    Article  Google Scholar 

  61. J.Y. Kim, T.-J. Lee, D.-W. Cho, B.-S. Kim, Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 21, 951–962 (2010)

    Article  Google Scholar 

  62. T.K. Merceron, M. Burt, Y.-J. Seol, H.-W. Kang, S.J. Lee, J.J. Yoo, A. Atala, A 3D bioprinted complex structure for engineering the muscle–tendon unit. Biofabrication 7, 035003 (2015)

    Article  Google Scholar 

  63. I.T. Ozbolat, H. Chen, Y. Yu, Development of ‘multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot. Comput. Integr. Manuf. 30, 295–304 (2014)

    Article  Google Scholar 

  64. J.-H. Shim, J.-S. Lee, J.Y. Kim, D.-W. Cho, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng. 22, 085014 (2012)

    Article  Google Scholar 

  65. W. Schuurman, V. Khristov, M.W. Pot, P.R. Van Weeren, W.J. Dhert, J. Malda, Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3, 021001 (2011)

    Article  Google Scholar 

  66. Y. Yu, K.K. Moncal, J. Li, W. Peng, I. Rivero, J.A. Martin, I.T. Ozbolat, Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci. Rep. 6, 28714 (2016)

    Article  Google Scholar 

  67. Y. Yu, Y. Zhang, I.T. Ozbolat, A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. Eng. 136, 061013 (2014)

    Article  Google Scholar 

  68. Y. Jung, H. Ji, Z. Chen, H.F. Chan, L. Atchison, B. Klitzman, G. Truskey, K.W. Leong, Scaffold-free, human mesenchymal stem cell-based tissue engineered blood vessels. Sci. Rep. 5, 15116 (2015)

    Article  Google Scholar 

  69. J. Kundu, J.H. Shim, J. Jang, S.W. Kim, D.W. Cho, An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 9, 1286–1297 (2015)

    Article  Google Scholar 

  70. J.-S. Lee, J.M. Hong, J.W. Jung, J.-H. Shim, J.-H. Oh, D.-W. Cho, 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6, 024103 (2014)

    Article  Google Scholar 

  71. F. Pati, D.-H. Ha, J. Jang, H.H. Han, J.-W. Rhie, D.-W. Cho, Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62, 164–175 (2015)

    Article  Google Scholar 

  72. F. Pati, J. Jang, D.-H. Ha, S.W. Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, D.-W. Cho, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014)

    Article  Google Scholar 

  73. F. Pati, J.-H. Shim, J.-S. Lee, D.-W. Cho, 3D printing of cell-laden constructs for heterogeneous tissue regeneration. Manufact. Lett. 1, 49–53 (2013)

    Article  Google Scholar 

  74. S.J. Song, J. Choi, Y.D. Park, S. Hong, J.J. Lee, C.B. Ahn, H. Choi, K. Sun, Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system. Artif. Organs 35, 1132–1136 (2011)

    Article  Google Scholar 

  75. S.J. Song, J. Choi, Y.D. Park, J.J. Lee, S.Y. Hong, K. Sun, A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization. Artif. Organs 34, 1044–1048 (2010)

    Article  Google Scholar 

  76. S. Hong, S.-J. Song, J.Y. Lee, H. Jang, J. Choi, K. Sun, Y. Park, Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J. Biosci. Bioeng. 116, 224–230 (2013)

    Article  Google Scholar 

  77. J. Visser, B. Peters, T.J. Burger, J. Boomstra, W.J. Dhert, F.P. Melchels, J. Malda, Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5, 035007 (2013)

    Article  Google Scholar 

  78. B. Raphael, T. Khalil, V.L. Workman, A. Smith, C.P. Brown, C. Streuli, A. Saiani, M. Domingos, 3D cell bioprinting of self-assembling peptide-based hydrogels. Mater. Lett. 190, 103–106 (2017)

    Article  Google Scholar 

  79. T. Xu, K.W. Binder, M.Z. Albanna, D. Dice, W. Zhao, J.J. Yoo, A. Atala, Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5, 015001 (2012)

    Article  Google Scholar 

  80. F. Liu, W. Wang, W. Mirihanage, P. Bartolo, S. Hinduja, A plasma-assisted bioextrusion system for tissue engineering. CIRP Ann. Manuf. Technol. 67(1), 229–232 (2018)

    Article  Google Scholar 

  81. M.A. Geven, C. Sprecher, O. Guillaume, D. Eglin, D.W. Grijpma, Micro-porous composite scaffolds of photo-crosslinked poly (trimethylene carbonate) and nano-hydroxyapatite prepared by low-temperature extrusion-based additive manufacturing. Polym. Adv. Technol. 28, 1226–1232 (2017)

    Article  Google Scholar 

  82. D.O. Visscher, E.J. Bos, M. Peeters, N.V. Kuzmin, M.L. Groot, M.N. Helder, P.P. van Zuijlen, Cartilage tissue engineering: preventing tissue scaffold contraction using a 3D-printed polymeric cage. Tissue Eng. Part C Methods 22(6), 573–584 (2016)

    Article  Google Scholar 

  83. F. Liu, H. Mishbak, P. Jorge Dasilva Bartolo, Hybrid polycaprolactone/hydrogel scaffold fabrication and in-process plasma treatment using PABS. Int. J. Bioprinting 5, 1–9 (2019)

    Google Scholar 

  84. F. Liu, W. Wang, S. Hinduja, P. Bartolo, Hybrid additive manufacturing system for zonal plasma treated scaffolds. Biofabrication 5, 205 (2018)

    Google Scholar 

  85. M.B. Goldring, S.R. Goldring, Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci. 1192, 230–237 (2010)

    Article  Google Scholar 

  86. K.H. Lee, S.J. Shin, Y. Park, S.H. Lee, Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small 5, 1264–1268 (2009)

    Article  Google Scholar 

  87. Y. Luo, A. Lode, M. Gelinsky, Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv. Healthc. Mater. 2, 777–783 (2013)

    Article  Google Scholar 

  88. Y.S. Zhang, A. Arneri, S. Bersini, S.-R. Shin, K. Zhu, Z. Goli-Malekabadi, J. Aleman, C. Colosi, F. Busignani, V. Dell’erba, Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016)

    Article  Google Scholar 

  89. N. Oxman, Variable property rapid prototyping: Inspired by nature, where form is characterized by heterogeneous compositions, the paper presents a novel approach to layered manufacturing entitled variable property rapid prototyping. Virtual Phys. Prototyping 6, 3–31 (2011)

    Article  Google Scholar 

  90. N. Oxman, Material-Based Design Computation (Massachusetts Institute of Technology, Cambridge, 2010)

    Google Scholar 

  91. S.E. Bakarich, R. Gorkin III, R. Gately, S. Naficy, M. In Het Panhuis, G.M. Spinks, 3D printing of tough hydrogel composites with spatially varying materials properties. Addit. Manuf. 14, 24–30 (2017)

    Google Scholar 

  92. L. Ren, Z. Song, H. Liu, Q. Han, C. Zhao, B. Derby, Q. Liu, L. Ren, 3D printing of materials with spatially non-linearly varying properties. Mater. Des. 156, 470–479 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding provided by the Engineering and Physical Sciences Research Council and the Medical Research Council Centre for Doctoral Training in Regenerative Medicine (EP/L014904/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengyuan Liu or Paulo Jorge Bártolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, F., Vyas, C., Yang, J., Ates, G., Bártolo, P.J. (2021). A Review of Hybrid Biomanufacturing Systems Applied in Tissue Regeneration. In: Bidanda, B., Bártolo, P.J. (eds) Virtual Prototyping & Bio Manufacturing in Medical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35880-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35880-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35879-2

  • Online ISBN: 978-3-030-35880-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics