Skip to main content

Kuksa: A Cloud-Native Architecture for Enabling Continuous Delivery in the Automotive Domain

  • Conference paper
  • First Online:
Product-Focused Software Process Improvement (PROFES 2019)

Abstract

Connecting vehicles to cloud platforms has enabled innovative business scenarios while raising new quality concerns, such as reliability and scalability, which must be addressed by research. Cloud-native architectures based on microservices are a recent approach to enable continuous delivery and to improve service reliability and scalability. We propose an approach for restructuring cloud platform architectures in the automotive domain into a microservices architecture. To this end, we adopted and implemented microservices patterns from literature to design the cloud-native automotive architecture and conducted a laboratory experiment to evaluate the reliability and scalability of microservices in the context of a real-world project in the automotive domain called Eclipse Kuksa. Findings indicated that the proposed architecture could handle the continuous software delivery over-the-air by sending automatic control messages to a vehicular setting. Different patterns enabled us to make changes or interrupt services without extending the impact to others. The results of this study provide evidences that microservices are a potential design solution when dealing with service failures and high payload on cloud-based services in the automotive domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ahmadbanijamali/Rover-Control-Experiment.git.

  2. 2.

    https://projects.eclipse.org/projects/iot.kuksa.

  3. 3.

    https://app4mc-rover.github.io/rover-app/.

References

  1. Aderaldo, C.M., Mendonça, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements for microservices architecture research. In: 1st International Workshop on Establishing the Community-Wide Infrastructure for Architecture-Based Software Engineering, pp. 8–13. IEEE (2017)

    Google Scholar 

  2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables devops: migration to a cloud-native architecture. IEEE Softw. 33, 42–52 (2016)

    Article  Google Scholar 

  3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33313-7_15

    Chapter  Google Scholar 

  4. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microservices migration patterns. J. Softw.: Pract. Exp. 48, 2019–2042 (2018)

    Google Scholar 

  5. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-Wesley Professional, Boston (2015)

    Google Scholar 

  6. Chen, L.: Microservices: architecting for continuous delivery and DevOps. In: IEEE International Conference on Software Architecture (ICSA), pp. 39–397. IEEE (2018)

    Google Scholar 

  7. Contreras-Castillo, J., Zeadally, S., Guerrero-Ibanez, J.A.: Internet of vehicles: architecture, protocols, and security. Internet Things J. 5, 3701–3709 (2018)

    Article  Google Scholar 

  8. Datta, S.K., Gyrard, A., Bonnet, C., Boudaoud, K.: oneM2M architecture based user centric IoT application development. In: 3rd International Conference on Future Internet of Things and Cloud, pp. 100–107. IEEE (2015)

    Google Scholar 

  9. Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: Microservices: migration of a mission critical system. arXiv preprint arXiv:1704.04173 (2017)

  10. Ebert, C., Favaro, J.: Automotive software. IEEE Softw. 34, 33–39 (2017)

    Article  Google Scholar 

  11. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: Devops. IEEE Softw. 33, 94–100 (2016)

    Article  Google Scholar 

  12. Fiosina, J., Fiosins, M., Müller, J.P.: Big data processing and mining for next generation intelligent transportation systems. J. Teknologi 63, 21–38 (2013)

    Google Scholar 

  13. Fowler, M., Lewis, J.: Microservices. https://martinfowler.com/articles/microservices.html

  14. Google Cloud: Designing a Connected Vehicle Platform on Cloud IoT Core 2019-05-07. https://cloud.google.com/solutions/designing-connected-vehicle-platform

  15. Häberle, T., Charissis, L., Fehling, C., Nahm, J., Leymann, F.: The connected car in the cloud: a platform for prototyping telematics services. IEEE Softw. 32, 11–17 (2015)

    Article  Google Scholar 

  16. Haghighatkhah, A., Banijamali, A., Pakanen, O., Oivo, M., Kuvaja, P.: Automotive software engineering: a systematic mapping study. J. Syst. Soft. 128, 25–55 (2017)

    Article  Google Scholar 

  17. He, W., Yan, G., Da, X.L.: Developing vehicular data cloud services in the IoT environment. IEEE Trans. Ind. Inf. 10, 1587–1595 (2014)

    Article  Google Scholar 

  18. Jain, P.: Automotive Cloud Technology to Drive Industry’s New Business Models - 2019-05-07. http://shiftmobility.com/2017/06/automotive-cloud-technology-drive-automotive-industrys-new-business-models

  19. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53, 50–59 (2010)

    Article  Google Scholar 

  20. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting microservices from monolithic enterprise systems. arXiv:1605.03175 (2016)

  21. Lu, N., Cheng, N., Zhang, N., Shen, X., Mark, J.W.: Connected vehicles: solutions and challenges. Internet Things J. 1, 289–299 (2014)

    Article  Google Scholar 

  22. Mietzner, R., Leymann, F., Unger, T.: Horizontal and vertical combination of multi-tenancy patterns in service-oriented applications. Enterp. Inf. Syst. 5, 59–77 (2011)

    Article  Google Scholar 

  23. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly Media Inc., Newton (2015)

    Google Scholar 

  24. O’Brien, L., Merson, P., Bass, L.: Quality attributes for service-oriented architectures. In: Proceedings of the International Workshop on Systems Development in SOA Environments, p. 3 (2007)

    Google Scholar 

  25. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings of the 6th International Conference on Cloud Computing and Services Science, pp. 137–146 (2016)

    Google Scholar 

  26. Rufino, J., Alam, M., Ferreira, J.: Monitoring V2X applications using DevOps and docker. In: International Smart Cities Conference, pp. 1–5 (2017)

    Google Scholar 

  27. Serrano, D., Baldassarre, T., Stroulia, E.: Real-time traffic-based routing, based on open data and open-source software. In: 3rd World Forum on Internet of Things, pp. 661–665 (2016)

    Google Scholar 

  28. Shavit, M., Gryc, A., Miucic, R.: Firmware update over the air (FOTA) for automotive industry. SAE Technical (2007)

    Google Scholar 

  29. Stol, K., Fitzgerald, B.: The ABC of software engineering research. ACM Trans. Softw. Eng. Methodol. 27, 11 (2018)

    Article  Google Scholar 

  30. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a systematic mapping study. In: Proceedings of the 8th International Conference on Cloud Computing and Services Science, pp. 221–232 (2018)

    Google Scholar 

  31. Thönes, J.: Microservices. IEEE Softw. 32, 116–116 (2015)

    Article  Google Scholar 

  32. Yang, M., Mahmood, M., Zhou, X., Shafaq, S., Zahid, L.: Design and implementation of cloud platform for intelligent logistics in the trend of intellectualization. China Commun. 14, 180–191 (2017)

    Article  Google Scholar 

  33. Zeller, M., Prehofer, C., Krefft, D., Weiss, G.: Towards runtime adaptation in AUTOSAR. In: 5th Workshop on Adaptive and Reconfigurable Embedded Systems, vol. 10, pp. 17–20 (2013)

    Google Scholar 

  34. Zhang, T., Antunes, H., Aggarwal, S.: Defending connected vehicles against malware: challenges and a solution framework. Internet Things J. 1, 10–21 (2014)

    Article  Google Scholar 

  35. Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and its practices. IEEE Softw. 33, 32–34 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Banijamali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banijamali, A., Jamshidi, P., Kuvaja, P., Oivo, M. (2019). Kuksa: A Cloud-Native Architecture for Enabling Continuous Delivery in the Automotive Domain. In: Franch, X., Männistö, T., Martínez-Fernández, S. (eds) Product-Focused Software Process Improvement. PROFES 2019. Lecture Notes in Computer Science(), vol 11915. Springer, Cham. https://doi.org/10.1007/978-3-030-35333-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35333-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35332-2

  • Online ISBN: 978-3-030-35333-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics