Skip to main content

Clustering Noisy Temporal Data

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11888))

Included in the following conference series:

  • 1764 Accesses

Abstract

Clustering time series data is frequently hampered by various noise components within the signal. These disturbances affect the ability of clustering to detect similarities across the various signals, which may result in poor clustering results. We propose a method, which first smooths out such noise using wavelet decomposition and thresholding, then reconstructs the original signal (with minimised noise) and finally undertakes the clustering on this new signal. We experimentally evaluate the proposed method on 250 signals that are generated from five classes of signals. Our proposed method achieves improved clustering results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Given we know the class that a signal belongs to, we first ignore the class label of a signal to simulate a real life clustering scenario where the class labels are unknown. After clustering the signals we use the class labels as ground truth for the purpose of clustering evaluation.

  2. 2.

    Clustering result tables for Simple Moving Average order 3, Hard and Soft thresholding not shown, similarly for clustering using raw wavelet coefficients.

References

  1. Vlachos, M., Lin, J., Keogh, E., Gunopulos, D.: Wavelet-based anytime algorithm for k-means clustering of time series. In: Proceedings of Workshop on Clustering High Dimensionality Data and Its Applications (2003)

    Google Scholar 

  2. Rahman, M.A., Islam, M.Z.: A hybrid clustering technique combining a novel genetic algorithm with k-means. Knowl. Based Syst. (KBS) 71, 345–365 (2014)

    Article  Google Scholar 

  3. Beg, A.H., Islam, M.Z.: A novel genetic algorithm-based clustering technique and its suitability for knowledge discovery from a brain dataset. In: Proceedings of IEEE Congress on Evolutionary Computation (IEEE CEC), Vancouver, Canada, 24–29 July 2016, pp. 948–956 (2016)

    Google Scholar 

  4. Härdle, W.K., Simar, L.: Applied Multivariate Statistical Analysis. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45171-7

    Book  MATH  Google Scholar 

  5. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/

  6. Constantine, W., Percival, D.: wmtsa: Wavelet Methods for Time Series Analysis. R package version 2.0-3 (2017). https://CRAN.R-project.org/package=wmtsa

  7. Goyal, A., Bijalwan, A., Chowdhury, K.: A comprehensive review of image smoothing techniques. Int. J. Adv. Res. Comput. Sci. Technol. 1(4), 315–319 (2012)

    Google Scholar 

  8. Warren Liao, T.: Clustering of time series data-a survey. J. Pattern Recogn. Soc. 38, 1857–1874 (2005)

    Article  Google Scholar 

  9. Sidney Burrus, C., Gopinath, R., Guo, H.: Introduction to Wavelets and Wavelet Transforms. Prentice Hall, New Jersey (1998)

    Google Scholar 

  10. Guo, H., Liu, Y., Liang, H., Gao, X.: An application on time series clustering based on wavelet decomposition and denoising. In: Fourth International Conference on Natural Computation (2008)

    Google Scholar 

  11. Graps, A.: An introduction to wavelets. IEEE Comput. Sci. Eng. 2(2), 50–61 (1995)

    Article  Google Scholar 

  12. Polikar, R.: The Engineers Ultimate Guide to Wavelet Analysis: The Wavelet Tutorial Part I (2006)

    Google Scholar 

  13. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  14. Nason, G.P.: Wavelet Methods in Statistics with R. Use R!. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75961-6

    Book  MATH  Google Scholar 

  15. Downie, T., Silverman, B.: The discrete multiple wavelet transform and thresholding methods. IEEE Trans Signal Process. 46, 2558–2561 (1998)

    Article  Google Scholar 

  16. Donoho, D., Johnstone, I.: Adapting to unknown smoothness via wavelet shrinkage. Am. Stat. Asoc. 90, 1200–1224 (1995)

    Article  MathSciNet  Google Scholar 

  17. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp. 291–297 (1967)

    Google Scholar 

  18. Murtagh, F.: Multidimensional clustering algorithms. In: COMPSTAT Lectures 4. Wuerzburg: Physica-Verlag (1985)

    Google Scholar 

  19. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grant, P., Islam, M.Z. (2019). Clustering Noisy Temporal Data. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2019. Lecture Notes in Computer Science(), vol 11888. Springer, Cham. https://doi.org/10.1007/978-3-030-35231-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35231-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35230-1

  • Online ISBN: 978-3-030-35231-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics