Skip to main content

Food Waste and Manure

  • Chapter
  • First Online:

Abstract

Investigation of composition of biomass is an important pre-requisite for determining its suitability for various downstream applications. In recent times, food waste has emerged as a valuable biomass feedstock which could be valorized for production of fuels, chemicals and materials. Prior to use as a feedstock, it is pertinent to perform a detailed composition analysis and gather critical information about nutrient content including carbon, nitrogen and lipid. Additionally, analysis of minor constituents in food waste is significant to understand the possibility of their toxic or inhibitory effects during biotechnological conversions. Another abundant biomass source is manure which primarily arises from animal feeding operations. The major application of manure is land-applied fertilizer besides the recent investigations for fuel and energy. These intended applications demand complete characterization of nutrient content and quality. Thus, this chapter is focused on characterization and analysis of food waste and manure. Methods for sampling, handling and pretreatment of food waste and manure are discussed. Furthermore, a detailed nutrient analysis and equipment used for analysis is described. We further discuss the application of food waste processing techniques which could facilitate the characterization, treatment and product recovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parfitt, J., Barthel, M., Macnaughton, S.: Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3065–3081 (2010)

    Article  Google Scholar 

  2. Rezaei, M., Liu, B.: Food loss and waste in the food supply chain. International Nut and Dried Fruit council, Reus (2017)

    Google Scholar 

  3. FAO: Global Food Losses and Food Waste: Extent, Causes and Prevention, Save Food! Rome. http://dx.doi.org/10.1098/rstb.2010.0126 (2011). Accessed 18 Dec 2017

  4. Paritosh, K., Kushwaha, S.K., Yadav, M., Pareek, N., Chawade, A., Vivekanand, V.: Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed. Res. Int. 2017, 19 (2017)

    Article  CAS  Google Scholar 

  5. Lin, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., Luque, R.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6(2), 426–464 (2013)

    Article  CAS  Google Scholar 

  6. Waqas, M., Rehan, M., Khan, M.D., Nizami, A.-S.: Conversion of food waste to fermentation products. (2018). https://doi.org/10.1016/B978-0-08-100596-5.22294-4

    Chapter  Google Scholar 

  7. Negassa, W., Leinweber, P.: How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J. Plant Nutr. Soil Sci. 172, 305–325 (2009)

    Article  CAS  Google Scholar 

  8. Peltre, C., Bruun, S., Du, C., Thomsen, I.K., Jensen, L.S.: Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy. Soil Biol. Biochem. 77 (Supplement C), 41–50 (2014)

    Google Scholar 

  9. Reeves, J.B.: Near-infrared diffuse reflectance spectroscopy for the analysis of poultry manures. J. Agric. Food Chem. 49, 2193–2197 (2001)

    Article  CAS  Google Scholar 

  10. Ogejo, J. A.: Selection and Location of Poultry and Livestock Manure Storage, pp. 442–307. Virginia Cooperative Extension, VCE publication (2009)

    Google Scholar 

  11. Bicudo, J.R.: Animal solid manure: storage, handling and disposal. Encyclopedia of Life Support Systems (EOLSS) vol. II, (2009)

    Google Scholar 

  12. He, Z., Honeycutt, C.W., Griffin, T.S., Cade-Menun, B.J., Pellechia, P.J., Dou, Z.: Phosphorus forms in conventional and organic dairy manure identified by solution and solid state p-31 NMR spectroscopy. J. Environ. Qual. 38, 1909–1918 (2009)

    Article  CAS  Google Scholar 

  13. Zhu, W., Yao, W., Zhang, Z., Wu, Y.: Heavy metal behavior and dissolved organic matter (DOM) characterization of vermicomposted pig manure amended with rice straw. Environ. Sci. Pollut. Res. 21, 12684–12692 (2014)

    Article  CAS  Google Scholar 

  14. Kosseva, M.R.: Chapter 3—sources, characterization, and composition of food industry wastes. In: Food Industry Wastes, pp. 37–60. Academic Press, San Diego (2013)

    Chapter  Google Scholar 

  15. WRAP: The Food We Waste, Banbury, UK. http://www.wrap.org.uk/downloads/The_Food_We_Waste_v2__2_.99cb5cae.5635.pdf (2008). Accessed 14 Dec 2017

  16. Morawicki, R.O.: Sampling and sample preparation. In: Food Analysis, pp. 69–81. Springer US, Boston, MA (2010)

    Google Scholar 

  17. Suresh, K., Thomas, S., Suresh, G.: Design, data analysis and sampling techniques for clinical research. Ann. Indian Acad. Neurol. 14, 287–290 (2011)

    Article  Google Scholar 

  18. Swyngedouw, C., Crépin, J.M.: Sampling methods for site characterization. Environ. Geochem. 13–27 (2008)

    Google Scholar 

  19. Sahimaa, O., Hupponen, M., Horttanainen, M., Sorvari, J.: Method for residual household waste composition studies. Waste Manag. 46, 3–14 (2015)

    Article  Google Scholar 

  20. Elfil, M., Negida, A.: Sampling methods in clinical research; an educational review. Emerg. 5, e52 (2017)

    Google Scholar 

  21. Kwan, T.H., Hu, Y., Lin, C.S.K.: Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour. Technol. 217, 129–136 (2016)

    Article  CAS  Google Scholar 

  22. Yu, I.K.M., Tsang, D.C.W., Yip, A.C.K., Chen, S.S., Wang, L., Ok, Y.S., Poon, C.S.: Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity. Bioresour. Technol. 237, 222–230 (2017)

    Article  CAS  Google Scholar 

  23. Li, C., Yang, X., Gao, S., Chuh, A.H., Lin, C.S.K.: Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowia lipolytica. J. Clean. Prod. 179, 151–159 (2018)

    Article  CAS  Google Scholar 

  24. Pagliaccia, P., Gallipoli, A., Gianico, A., Montecchio, D., Braguglia, C.M.: Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: impact of thermal pretreatment on hydrogen and methane production. Int. J. Hydrog. Energy 41(2), 905–915 (2016)

    Article  CAS  Google Scholar 

  25. Ciurzyńska, A., Lenart, A.: Freeze-drying—application in food processing and biotechnology. Pol. J. Food Nutr. Sci. 3, 165–171 (2011)

    Article  Google Scholar 

  26. Hegde, S., Lodge, J.S., Trabold, T.A.: Characteristics of food processing wastes and their use in sustainable alcohol production. Renew. Sust. Energ. Rev. 81, 510–523 (2018)

    Article  CAS  Google Scholar 

  27. Meghwal, M., Goyal, M.R.: Developing technologies in food science: status, applications, and challenges. CRC Press Taylor & Francis Group (2017)

    Google Scholar 

  28. AOAC: Official Methods of Analysis of the Association of Analytical Chemists International, 18th edn, AOAC International, Gathersburg, MD U.S.A. (2005)

    Google Scholar 

  29. Nielsen, S.S.: Determination of moisture content. In: Nielsen, S.S. (eds) Food Analysis Laboratory Manual, pp 17–27. Springer US, Boston, MA (2010)

    Google Scholar 

  30. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  CAS  Google Scholar 

  31. Lever, M.: A new reaction for colorimetric determination of carbohydrates. Anal. Biochem. 47(1), 273–279 (1972)

    Article  CAS  Google Scholar 

  32. WRAP: Food Waste Chemical Analysis. http://www.wrapcymru.org.uk/sites/files/wrap/Technical_report_food_waste_characterisation_Wales_2009x2.9086.pdf (2010). Accessed 14 Dec 2017

  33. Gur, A., Cohen, A., Bravdo, B.-A.: Colorimetric method for starch determination. J. Agric. Food Chem. 17, 347–351 (1969)

    Article  CAS  Google Scholar 

  34. Megazyme: Total Starch Assay Procedure (Amyloglucosidase/ α-Amylase method). https://secure.megazyme.com/files/Booklet/K-TSTA_DATA.pdf (2017). Accessed 20 Dec 2017

  35. Ma, Y., Cai, W., Liu, Y.: An integrated engineering system for maximizing bioenergy production from food waste. Appl. Energy 206, 83–89 (2017)

    Article  CAS  Google Scholar 

  36. Pleissner, D., Kwan, T.H., Lin, C.S.K.: Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour. Technol. 158(Supplement C), 48–54 (2014)

    Article  CAS  Google Scholar 

  37. Pleissner, D., Demichelis, F., Mariano, S., Fiore, S., Navarro Gutiérrez, I.M., Schneider, R., Venus, J.: Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J. Clean. Prod. 143, 615–623 (2017)

    Article  CAS  Google Scholar 

  38. Karkacier, M., Erbas, M., Uslu, M.K., Aksu, M.: Comparison of different extraction and detection methods for sugars using amino-bonded phase HPLC. J. Chromatogr. Sci. 41, 331–333 (2003)

    Article  CAS  Google Scholar 

  39. Van Slyke, D.D.: A method for quantitative determination of aliphatic amino groups applications to the study of proteolysis and proteolytic products. J. Biol. Chem. 9, 185–204 (1911)

    Google Scholar 

  40. Pleissner, D., Wimmer, R., Eriksen, N.T.: Quantification of amino acids in fermentation media by isocratic HPLC analysis of their α-hydroxy acid derivatives. Anal. Chem. 83(1), 175–181 (2011)

    Article  CAS  Google Scholar 

  41. Ulusoy, S., Ulusoy, H.I., Pleissner, D., Eriksen, N.T.: Nitrosation and analysis of amino acid derivatives by isocratic HPLC. RSC Adv. 6(16), 13120–13128 (2016)

    Article  CAS  Google Scholar 

  42. Lie, S.: The EBC-ninhydrin method for dertermination of free alpha amino nitrogen. J. Inst. Brew. 79(1), 37–41 (1973)

    Article  CAS  Google Scholar 

  43. Du, C., Lin, S.K.C., Koutinas, A., Wang, R., Webb, C.: Succinic acid production from wheat using a biorefining strategy. Appl. Microbiol. Biotechnol. 76(6), 1263–1270 (2007)

    Article  CAS  Google Scholar 

  44. Wang, R., Shaarani, S.M., Godoy, L.C., Melikoglu, M., Vergara, C.S., Koutinas, A., Webb, C.: Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enzyme Microb. Technol. 47(3), 77–83 (2010)

    Article  CAS  Google Scholar 

  45. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1), 248–254 (1976)

    Article  CAS  Google Scholar 

  46. Kirk, P.L.: Kjeldahl method for total nitrogen. Anal. Chem. 22(2), 354–358 (1950)

    Article  CAS  Google Scholar 

  47. Campins-Falco, P., Meseguer-Lloret, S., Climent-Santamaria, T., Molins-Legua, C.: A microscale Kjeldahl nitrogen determination for environmental waters. Talanta 75(4), 1123–1126 (2008)

    Article  CAS  Google Scholar 

  48. Mariotti, F., Tomé, D., Mirand, P.P.: Converting nitrogen into protein—beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 48(2), 177–184 (2008)

    Article  CAS  Google Scholar 

  49. Pleissner, D., Lam, W.C., Sun, Z., Lin, C.S.K.: Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour. Technol. 137(Supplement C), 139–146 (2013)

    Article  CAS  Google Scholar 

  50. Merrill, A.L., Watt, B.K.: Energy value of foods: basis and derivation. United States Department of Agriculture, Washington, DC (1973)

    Google Scholar 

  51. Ghareib, M., Youssef, K.A., Khalil, A.A.: Ethanol tolerance of Saccharomyces cerevisiae and its relationship to lipid content and composition. Folia Microbiol. 33(6), 447–452 (1988)

    Article  CAS  Google Scholar 

  52. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37(8), 911–917 (1959)

    Article  CAS  Google Scholar 

  53. FDA: Overview of Food Ingredients, Additives & Colors. https://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm094211.htm#introduction (2010). Accessed 19 Dec 2017

  54. Kuprovskytë, K., Pranaitytë, B., Padarauskas, A.: Isocratic HPLC determination of preservatives in beverages. Chemija 13, 160–163 (2002)

    Google Scholar 

  55. Janovitz-Klapp, A.H., Richard, F.C., Goupy, P.M., Nicolas, J.J.: Inhibition studies on apple polyphenol oxidase. J. Agr. Food Chem. 38(4), 926–931 (1990)

    Article  CAS  Google Scholar 

  56. Noda, T., Ohtani, T., Shiina, T., Nawa, Y.: Semi-continuous hydrolysis of sweet potato raw starch by Chalara paradoxa glucoamylase. J. Food Sci. 57(6), 1348–1352 (1992)

    Article  CAS  Google Scholar 

  57. Ruiz-Capillas, C., Jimenez-Colmenero, F.: Determination of preservatives in meat products by flow injection analysis (FIA). Food Addit. Contam. Part A 25(10), 1167–1178 (2008)

    Article  CAS  Google Scholar 

  58. Phechkrajang, C.M., Yooyong, S.: Fast and simple method for semiquantitative determination of calcium propionate in bread samples. J. Food Drug Anal. 25(2), 254–259 (2017)

    Article  CAS  Google Scholar 

  59. Aubin, A.: Acquity UPLC for the rapid analysis of soft drinks. https://www.waters.com/webassets/cms/library/docs/720001053en.pdf (2014). Accessed 16 Nov 2017

  60. Uhlemann, U., Strelau, K.K., Weber, K., Da Costa Filho, P.A., Rösch, P., Popp, J.: Raman spectroscopic determination of norbixin and tartrazine in sugar. Food Addit. Contam. Part A 29(8), 1244–1255 (2012)

    Article  CAS  Google Scholar 

  61. López-Montes, A.M., Dupont, A.-L., Desmazières, B., Lavédrine, B.: Identification of synthetic dyes in early colour photographs using capillary electrophoresis and electrospray ionisation–mass spectrometry. Talanta 114(Supplement C), 217–226 (2013)

    Article  CAS  Google Scholar 

  62. de Araújo Siqueira Bento, W., Lima, B.P., and Paim, A.P.S.: Simultaneous determination of synthetic colorants in yogurt by HPLC. Food Chem. 183, 154–160 (2015)

    Google Scholar 

  63. González, M., Gallego, M., Valcárcel, M.: Determination of natural and synthetic colorants in prescreened dairy samples using liquid chromatography-diode array detection. Anal. Chem. 75(3), 685–693 (2003)

    Article  Google Scholar 

  64. Karanikolopoulos, G., Gerakis, A., Papadopoulou, K., Mastrantoni, I.: Determination of synthetic food colorants in fish products by an HPLC-DAD method. Food Chem. 177(Supplement C), 197–203 (2015)

    Article  CAS  Google Scholar 

  65. Brady, E., Burgess, J.: Analysis of artificial food dyes using ultraperformance liquid chromatography and an extended wavelength Photo Diode Array detector. http://www.waters.com/webassets/cms/library/docs/720005217en.pdf (2014). Accessed 10 Jan 2018

  66. Sigmann, S.B., Wheeler, D.E.: The quantitative determination of food dyes in powdered drink mixes. A high school or general science experiment. J. Chem. Edu. 81(10), 1475 (2004)

    Article  CAS  Google Scholar 

  67. USDA: National Engineering Handbook Part 651 (NEH 651), Agricultural waste management field handbook, NRCS, Iowa (2012)

    Google Scholar 

  68. FAO/IAEA: Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Guidelines for sustainable manure management in asian livestock production systems. Vienna, Austria https://www-pub.iaea.org/MTCD/publications/PDF/TE_1582_web.pdf (2008). Accessed 12 Jan 2018

  69. Ogejo, J.A.: Poultry and livestock manure storage: management and safety. (2009)

    Google Scholar 

  70. Ministry of Agriculture, B.C., Canada. Farm structures fact sheet, manure storage structure (2015)

    Google Scholar 

  71. Beaver, R.L., Field, W.E.: Summary of documented fatalities in livestock manure storage and handling facilities 1975–2004. J. agromedicine 12(2), 3–23 (2007)

    Article  Google Scholar 

  72. Po, M.: Manure handling and storage- farm practices guidelines for pig producers in Manitoba. (2007)

    Google Scholar 

  73. Forestry.: Agricultural Operation Practices Act. http://www.agriculture.alberta.ca/app21/ (2002). Accessed 19 Jan 2018

  74. Lorimor, J., Powers, W., Sutton, A.: Manure management systems series, section one-manure characteristics. In: Manure Management Systems Series-18, P. 24. Iowa State University (2004)

    Google Scholar 

  75. Murphy, S.: Manure sampling and analysis. Rutgers cooperative research & extension, (NJAES), The State University of New Jersey, Rutgers. https://www.researchgate.net/file.PostFileLoader.html?id=572d78ad615e272a5d37a987&asseKey = AS%3A358975368384513%401462597805690 (2006). Accessed 20 Feb 2018

  76. Dou, Z., Galligan, D., Allshouse, R., Toth, J., Ramberg, C., Ferguson, J.: Manure sampling for nutrient analysis. J. Environ. Qual. 30(4), 1432–1437 (2001)

    Article  CAS  Google Scholar 

  77. Zhu, N.: Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system. Bioresour. Technol. 97, 1870–1875 (2006)

    Article  CAS  Google Scholar 

  78. Flotats Ripoll, X., Foged, H., Bonmatí Blasi, A., Palatsi Civit, J., Magrí Aloy, A., Schelde, K.M.: Manure processing technologies. http://agro-technology-atlas.eu/docs/21010_technical_report_II_manure_processing_technologies.pdf (2012). Accessed 10 Jan 2018

  79. Hamilton, D., Zhang, H.: Solids content of wastewater and manure. Oklahoma Cooperative Extension Service. Publication BAE-1759. https://shareok.org/bitstream/handle/11244/49599/oksd_bae_1759_2011-10.pdf?sequence=1 (2011). Accessed 14 Nov 2019

  80. Møller, H.B., Sommer, S.G., Ahring, B.K.: Separation efficiency and particle size distribution in relation to manure type and storage conditions. Bioresour. Technol. 85(2), 189–196 (2002)

    Article  Google Scholar 

  81. Chastain, J.P., Camberato, J.J., Albrecht, J.E., Adams, J.: Swine manure production and nutrient content, South Carolina confined animal manure managers certification program, pp. 1–17. Clemson University, SC (1999)

    Google Scholar 

  82. James, R., Eastridge, M., Brown, L., Elder, K., Foster, S., Hoorman, J., Joyce, M., Keener, H., Mancl, K., Monnin, M.: Ohio livestock manure management guide: Bulletin 604. The Ohio State University Extension, Columbus (2006)

    Google Scholar 

  83. Møller, H.B., Lund, I., Sommer, S.G.: Solid–liquid separation of livestock slurry: efficiency and cost. Bioresour. Technol. 74(3), 223–229 (2000)

    Article  Google Scholar 

  84. Cordell, D., Drangert, J.-O., White, S.: The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19(2), 292–305 (2009)

    Article  Google Scholar 

  85. Camberato, J., Maloney, S., Casteel, S.: Sulfur deficiency in corn, department of agronomy soil fertility update. Purdue University, West Lafayette, IN (2012)

    Google Scholar 

  86. Sawyer, J.E., Lang, B., Barker, D.W.: Sulfur fertilization response in Iowa corn and soybean production. In: Proceedings of the 2012 Winconsin Crop Management Conference, vol. 51, 39–48 2012

    Google Scholar 

  87. Eastman, J.A., Ferguson, J.F.: Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J. Water Pollut. Control Fed., 352–366 (1981)

    Google Scholar 

  88. Peces, M., Astals, S., Mata-Alvarez, J.: Assessing total and volatile solids in municipal solid waste samples. Environ. Technol. 35, 3041–3046 (2014)

    Article  CAS  Google Scholar 

  89. Manitoba Agriculture Food and Rural Development: Properties of Manure. https://www.gov.mb.ca/agriculture/environment/nutrient-management/pubs/properties-of-manure.pdf (2015). Accessed 20 Dec 2017

  90. Pan, L., Shang, Q.H., Ma, X.K., Wu, Y., Long, S.F., Wang, Q.Q., Piao, X.S.: Coated compound proteases improve nitrogen utilization by decreasing manure nitrogen output for growing pigs fed sorghum soybean meal based diets. Anim. Feed Sci. Tech. 230 (Supplement C), 136–142 (2017)

    Google Scholar 

  91. Powell, J.M., Barros, T., Danes, M., Aguerre, M., Wattiaux, M., Reed, K.: Nitrogen use efficiencies to grow, feed, and recycle manure from the major diet components fed to dairy cows in the USA. Agric. Ecosyst. Environ. 239 (Supplement C), 274–282 (2017)

    Google Scholar 

  92. Liu, C., Guo, T., Chen, Y., Meng, Q., Zhu, C., Huang, H.: Physicochemical characteristics of stored cattle manure affect methane emissions by inducing divergence of methanogens that have different interactions with bacteria. Agri. Ecosyst. Environ. 253 (Supplement C), 38–47 (2018)

    Google Scholar 

  93. Montégut, G., Michelin, L., Brendlé, J., Lebeau, B., Patarin, J.: Ammonium and potassium removal from swine liquid manure using clinoptilolite, chabazite and faujasite zeolites. J. Environ. Manag. 167, 147–155 (2016)

    Article  CAS  Google Scholar 

  94. Fiske, C.H., Subbarow, Y.: The colorimetric determination of phosphorus. J. Biol. Chem. 66(2), 375–400 (1925)

    CAS  Google Scholar 

  95. Jakubus, M.: Estimation of phosphorus bioavailability from composted organic wastes. Chem. Speciation Bioavailability 28(1–4), 189–198 (2016)

    Article  CAS  Google Scholar 

  96. Lugo-Ospina, A., Dao, T.H., Van Kessel, J.A., Reeves, J.B.: Evaluation of quick tests for phosphorus determination in dairy manures. Environ. Pollut. 135(1), 155–162 (2005)

    Article  CAS  Google Scholar 

  97. Jastrzębska, A.: Modifications of spectrophotometric methods for total phosphorus determination in meat samples. Chem. Pap. 63(1), 47 (2008)

    Google Scholar 

  98. Amtmann, A., Rubio, F.: Potassium in Plants, In: eLS, Wiley, Ltd. (2001) https://doi.org/10.1002/9780470015902.a0023737

  99. Peters, J.: Recommended Methods of Manure Analysis. http://learningstore.uwex.edu/assets/pdfs/A3769.pdf (2003). Accessed 4 Dec 2017

  100. Whittles, C.L., Little, R.C.: A colorimetric method for the determination of potassium and its application to the analysis of soil extracts. J. Sci. Food Agric. 1(11), 323–326 (1950)

    Article  CAS  Google Scholar 

  101. Roa-Espinosa, A., Markley, J.L., Vu, T.T., Filatov, E., Roa-Lauby, S.W.: Elemental analysis of nutrients in dairy manure by automated X-ray fluorescence spectrometry. J. Environ. Anal. Chem. 3(1), 1–6 (2016)

    Article  Google Scholar 

  102. Chen, W.-C., Hsu, F.-Y., Yen, J.-H.: Effect of green manure amendment on herbicide pendimethalin on soil. J. Environ. Sci. Health B, 1–8 (2017)

    Google Scholar 

  103. APHA: Standard Methods For The Examination of Water and Wastewater. 21st edn., Washington. DC. (2005)

    Google Scholar 

  104. Standardization TSAf: UNE-EN ISO 10304-1: 2009 water quality—determination of dissolved anions by liquid chromatography of ions—Part 1: determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate (2009)

    Google Scholar 

  105. Iwegbue C.M.A, N.G., Osakwe S.A.: Recycling waste in agriculture: efficacy of composting in ameliorating trace metal availabilityand soil borne pathogens. Eur. J. Sci. Res. 11, 572–577 (2005)

    Google Scholar 

  106. Irshad, M., Malik, A.H., Shaukat, S., Mushtaq, S., Ashraf, M.: Characterization of heavy metals in livestock manures. Pol. J. Environ. Stud. 22(4), 1257–1262 (2013)

    CAS  Google Scholar 

  107. Bolan, N., Adriano, D., Mahimairaja, S.: Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit. Rev. Environ. Sci. Technol. 34(3), 291–338 (2004)

    Article  CAS  Google Scholar 

  108. He, Z., Fortuna, A.-M., Senwo, Z.N., Tazisong, I.A., Honeycutt, C.W., Griffin, T.S.: Hydrochloric fractions in Hedley fractio-nation may contain inorganic and organic phosphorus. Soil Sci. Soc. Am. J. 72(5), 893–899 (2006)

    Article  CAS  Google Scholar 

  109. Achiba, W.B., Lakhdar, A., Gabteni, N., Laing, G.D., Verloo, M., Boeckx, P., Van Cleemput, O., Jedidi, N., Gallali, T.: Accumulation and fractionation of trace metals in a Tunisian calcareous soil amended with farmyard manure and municipal solid waste compost. J. Hazard. Mater. 176(1), 99–108 (2010)

    Article  CAS  Google Scholar 

  110. Standardization, E.C.f. EN 15662 Foods of plant origin—determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and cleanup by dispersive SPE—QuEChERS-method, Brussels. (2008)

    Google Scholar 

  111. Ettre, L.S.: Nomenclature for chromatography (IUPAC recommendations 1993). Pure Appl. Chem. 65(4), 819 (1993)

    Article  CAS  Google Scholar 

  112. Nollet, L.M.L.: Food Analysis by HPLC, 2nd edn, Taylor & Francis (2000)

    Google Scholar 

  113. Yu, I.K.M., Ong, K.L., Tsang, D.C.W., Haque, M.A., Kwan, T.H., Chen, S.S., Uisan, K., Kulkarni, S., Lin, C.S.K.: Chemical transformation of food and beverage waste-derived fructose to hydroxymethylfurfural as a value-added product. Catal. Today 314, 70–77 (2018)

    Article  CAS  Google Scholar 

  114. Talcott, S.: High performance liquid chromatography. In: Nielsen, S.S. (ed.) Food Analysis Laboratory Manual, pp. 145–154. Springer US, Boston, MA (2010)

    Google Scholar 

  115. Harris, D.C.: Quantitative Chemical Anslysis, 8th edn. Freemand Palgrave Macmillan International Edition. Royal Society of Chemistry, London (2010)

    Google Scholar 

  116. Eiceman, G.A.: Instrumentation of gas chromatography. In: Meyers, R.A. (ed.) Encyclopedia of Analytical Chemistry. Wiley Ltd., Chichester (2006)

    Google Scholar 

  117. Snyder, A.P., Harden, C.S., Brittain, A.H., Kim, M.G., Arnold, N.S., Meuzelaar, H.L.C.: Portable hand-held gas chromatography/ion mobility spectrometry device. Anal. Chem. 65(3), 299–306 (1993)

    Article  CAS  Google Scholar 

  118. Jain, V., Phillips, J.B.: Fast temperature programming on fused-silica open-tubular capillary columns by direct resistive heating. J. Chromatogr. Sci. 33(1), 55–59 (1995)

    Article  CAS  Google Scholar 

  119. Eiceman, G.A., Hill, H.H., Gardea-Torresdey, J.: Gas chromatography. Anal. Chem. 72(12), 137–144 (2000)

    Article  CAS  Google Scholar 

  120. Hussain, S.Z., Maqbool, K.: GC-MS: principle, technique and its application in food science. J. CURR Sci. 13, 116–126 (2014)

    Google Scholar 

  121. Sparkman, O.D., Penton, Z., Kitson, F.G.: Gas chromatography and mass spectrometry: a practical guide, Academic Press (2011)

    Google Scholar 

  122. Schnitzer, M.I., Monreal, C.M., Jandl, G., Leinweber, P., Fransham, P.B.: The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS). J. Environ. Sci. Health Part B 42, 79–95 (2007)

    Article  CAS  Google Scholar 

  123. Yasuhara, A.: Identification of volatile compounds in poultry manure by gas chromatography—mass spectrometry. J. Chromatogr. A 387, 371–378 (1987)

    Article  CAS  Google Scholar 

  124. Yuan, M., Xiao, H., Lu, Y., Huang, H., Jiang, J., Zhao, Y., Mao, T.: Measuring volatile organic compounds by headspace trap GC-MS in the Beijing food laboratory. Am. Lab., On-Line Ed. (2009)

    Google Scholar 

  125. Lehotay, S.J., Hajšlová, J.: Application of gas chromatography in food analysis. Trends Anal. Chem. 21(9), 686–697 (2002)

    Article  CAS  Google Scholar 

  126. Chen, Z., Deutsch, T.G., Dinh, H.N., Domen, K., Emery, K., Forman, A.J., Gaillard, N., Garland, R., Heske, C., Jaramillo, T.F., Kleiman-Shwarsctein, A., Miller, E., Takanabe, K., Turner, J.: UV-Vis spectroscopy. In: Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, pp. 49–62. Springer, New York (2013)

    Google Scholar 

  127. Perkampus, H.-H., Grinter, H.-C.: UV-VIS Spectroscopy and its Applications. Springer-Verlag, Berlin Heidelberg (1992)

    Book  Google Scholar 

  128. Förster, H.: UV/VIS spectroscopy. In: Karge, H.G., Weitkamp, J. (eds.) Characterization I, pp. 337–426. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  129. Haque, M.A., Yang, X., Ong, K.L., Tang, W.-T., Kwan, T.H., Kulkarni, S., Lin, C.S.K.: Bioconversion of beverage waste to high fructose syrup as a value-added product. Food Bioprod. Process. 105, 179–187 (2017)

    Article  CAS  Google Scholar 

  130. APHA, AWWA, and WEF.: Standard Methods for the Examination of Water and Wastewater: 4500-N Nitrogen (Organic), 20th edn, (1999)

    Google Scholar 

  131. Goldman, M.S., Clifford, R.H.: Shimadzu’s total nitrogen module eliminates environmentally un-friendly environmental methods. https://www.ssi.shimadzu.com/products/literature/env/Shimadzu_TN_Module_Eliminates_EnvMethods.pdf (2017). Accessed 9 Jan 2018

  132. Elementar: Maximum performance on a micro foot print. https://www.elementar.de/en/products/organic-elemental-analysis/vario-max-cube.html (2018). Accessed 14 Jan 2018

  133. Xu, F., Li, Y., Ge, X., Yang, L., Li, Y.: Anaerobic digestion of food waste—challenges and opportunities. Bioresour. Technol. (2017)

    Google Scholar 

  134. Leytem, A.B., Kwanyuen, P., Plumstead, P.W., Maguire, R.O., Brake, J.: Evaluation of phosphorus characterization in broiler ileal digesta, manure, and litter samples: 31P-NMR vs HPLC. J. Environ. Qual. 37(2), 494–500 (2008)

    Article  CAS  Google Scholar 

  135. He, Z., Honeycutt, C.W., Cade-Menun, B.J., Senwo, Z.N., Tazisong, I.A.: Phosphorus in poultry litter and soil: enzymatic and nuclear magnetic resonance characterization. Soil Sci. Soc. Am. J. 72(5), 1425–1433 (2008)

    Article  CAS  Google Scholar 

  136. Li, G., Li, H., Leffelaar, P.A., Shen, J., Zhang, F.: Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China. PLoS ONE 9, e102698 (2014). https://doi.org/10.1371/journal.pone.0102698

    Article  CAS  Google Scholar 

  137. Kemme, P.A., Lommen, A., De Jonge, L.H., Van der Klis, J.D., Jongbloed, A.W., Mroz, Z., Beynen, A.C.: Quantification of inositol phosphates using (31)P nuclear magnetic resonance spectroscopy in animal nutrition. J. Agric. Food Chem. 47, 5116–5121 (1999)

    Article  CAS  Google Scholar 

  138. Leinweber, P., Haumaier, L., Zech, W.: Sequential extractions and 31P-NMR spectroscopy of phosphorus forms in animal manures, whole soils and particle-size separates from a densely populated livestock area in northwest Germany. Biol. Fertil. Soils 25(1), 89–94 (1997)

    Article  CAS  Google Scholar 

  139. Crouse, D.A., Sierzputowska-Gracz, H., Mikkelsen, R.L.: Optimization of sample pH and temperature for phosphorus-31 nuclear magnetic resonance spectroscopy of poultry manure extracts. Commun. Soil Sci. Plant Anal. 31(1–2), 229–240 (2000)

    Article  CAS  Google Scholar 

  140. Bowman, R.A., Moir, J.O.: Basic EDTA as an extractant for soil organic phosphorus. Soil Sci. Soc. Am. J. 57(6), 1516–1518 (1993)

    Article  CAS  Google Scholar 

  141. Murphy, J., Riley, J.P.: A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962)

    Article  CAS  Google Scholar 

  142. SAS Institute Inc., S.O. Version 8 edn., Cary, NC (1999)

    Google Scholar 

  143. Condron, L.M., Newman, S.: Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J. Soil. Sediment 11(5), 830–840 (2011)

    Article  CAS  Google Scholar 

  144. Kar, G., Hundal, L.S., Schoenau, J.J., Peak, D.: Direct chemical speciation of P in sequential chemical extraction residues using P K-Edge X-Ray absorption near-edge structure spectroscopy. Soil Sci. 176(11), 589–595 (2011)

    Article  CAS  Google Scholar 

  145. Ajiboye, B., Akinremi, O.O., Hu, Y., Flaten, D.N.: Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies. J. Environ. Qual. 36, 1563–1576 (2007)

    Article  CAS  Google Scholar 

  146. Khare, N., Hesterberg, D., Beauchemin, S., Wang, S.-L.: XANES Determination of adsorbed phosphate distribution between Ferrihydrite and Boehmite in mixtures. Soil Sci. Soc. Am. J. 68(2), 460–469 (2004)

    Article  CAS  Google Scholar 

  147. Liu, J., Yang, J., Cade-Menun, B.J., Liang, X., Hu, Y., Liu, C.W., Zhao, Y., Li, L., Shi, J.: Complementary phosphorus speciation in agricultural soils by sequential fractionation, solution 31P nuclear magnetic resonance, and phosphorus K-edge X-ray absorption near-edge structure spectroscopy. J. Environ. Qual. 42(6), 1763–1770 (2013)

    Article  CAS  Google Scholar 

  148. SAS Institute: Statistical Analysis Software. Release 9, Cary, NC. (2003)

    Google Scholar 

  149. Peltre, C., Thuriès, L., Barthès, B., Brunet, D., Morvan, T., Nicolardot, B., Parnaudeau, V., Houot, S.: Near infrared reflectance spectroscopy: a tool to characterize the composition of different types of exogenous organic matter and their behaviour in soil. Soil. Biol. and Biochem. 43(1), 197–205 (2011)

    Article  CAS  Google Scholar 

  150. Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., Paul, E.: Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter. Soil Sci. Soc. Am. J. 77(5), 1591–1600 (2013)

    Article  CAS  Google Scholar 

  151. Ellerbrock, R.H., Gerke, H.H., Böhm, C.: In situ DRIFT characterization of organic matter composition on soil structural surfaces. Soil Sci. Soc. Am. J. 73(2), 531–540 (2009)

    Article  CAS  Google Scholar 

  152. Smidt, E., Meissl, K., Schwanninger, M., Lechner, P.: Classification of waste materials using Fourier transform infrared spectroscopy and soft independent modeling of class analogy. Waste Manage. 28(10), 1699–1710 (2008)

    Article  CAS  Google Scholar 

  153. Du, C., Zhou, J., Wang, H., Chen, X., Zhu, A., Zhang, J.: Determination of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy. Vib. Spectro. 49(1), 32–37 (2009)

    Article  CAS  Google Scholar 

  154. Changwen, D., Guiqin, Z., Jianmin, Z., Huoyan, W., Xiaoqin, C., Yuanhua, D., Hui, W.: Characterization of animal manures using mid-infrared photoacoustic spectroscopy. Bioresour. Technol. 101, 6273–6277 (2010)

    Article  CAS  Google Scholar 

  155. Bekiaris, G., Bruun, S., Peltre, C., Houot, S., Jensen, L.S.: FTIR-PAS: A powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products. Waste manag. (New York, N.Y.) 39, 45–56 (2015)

    Google Scholar 

  156. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)

    Article  Google Scholar 

  157. Malley, D.F., McClure, C., Martin, P.D., Buckley, K., McCaughey, W.P.: Compositional analysis of cattle manure during composting using a field-portable near-infrared spectrometer. Commun. Soil Sci. Plant Anal. 36(4–6), 455–475 (2005)

    Article  CAS  Google Scholar 

  158. McGrath, J.M., Sims, J.T., Maguire, R.O., Saylor, W.W., Angel, C.R., Turner, B.L.: Broiler diet modification and litter storage. J. Environ. Qual. 34(5), 1896–1909 (2005)

    Article  CAS  Google Scholar 

  159. García-Sánchez, F., Galvez-Sola, L., Nicolás, J.J.M., Muelas-Domingo, R., Nieves, M.: Using near-infrared spectroscopy in agricultural systems. In: Kyprianidis, K. G., and Skvaril, J. (eds) Developments in Near-Infrared Spectroscopy, p. Ch. 05, InTech, Rijeka (2017)

    Google Scholar 

  160. Chen, L., Xing, L., Han, L.: Review of the application of near-infrared spectroscopy technology to determine the chemical composition of animal manure. J. Environ. Qual. 42(4), 1015–1028 (2013)

    Article  CAS  Google Scholar 

  161. Asai, T., Shimizu, S., Koga, T., Sato, M.: Quick determination of total nitrogen, total carbon, and crude ash in cattle manure using near-infrared reflectance spectroscopy. Nippon Dojo Hiryogaku Zasshi 64, 669–675 (1993)

    CAS  Google Scholar 

  162. Millmier, A., Lorimor, J., Hurburgh Jr., C., Fulhage, C., Hattey, J., Zhang, H.: Nearinfrared sensing of manure nutrients. Trans. ASAE 43, 903–908 (2000)

    Article  CAS  Google Scholar 

  163. Malley, D.F., Yesmin, L., Eilers, R.G.: Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy sponsoring organization: PDK projects. Inc. Soil Sci. Soc. Am. J. 66(5), 1677–1686 (2002)

    Article  CAS  Google Scholar 

  164. Blanco, M., Villarroya, I.: NIR spectroscopy: a rapid-response analytical tool. Trends Anal. Chem. 21(4), 240–250 (2002)

    Article  CAS  Google Scholar 

  165. Laporte, M.F., Paquin, P.: Near-infrared analysis of fat, protein, and casein in cow’s milk. J. Agric. Food Chem. 47, 2600–2605 (1999)

    Article  CAS  Google Scholar 

  166. Lee, S.J., Jeon, I.J., Harbers, L.H.: Near-infrared reflectance spectroscopy for rapid analysis of curds during cheddar cheese making. J. Food Sci. 62(1), 53–56 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Innovation and Technology Fundings (ITS/323/11), (ITS/353/12), (ITP/087/15FP) and (ITP/109/15TP) from Innovation and Technology Commission in Hong Kong. We are grateful to the industrial sponsors Starbucks Hong Kong, PepsiCo Inc. and Novozymes®. Daniel Pleissner acknowledges the Max Buchner Research Foundation in Frankfurt, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Sze Ki Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, C.S.K. et al. (2020). Food Waste and Manure. In: Nzihou, A. (eds) Handbook on Characterization of Biomass, Biowaste and Related By-products. Springer, Cham. https://doi.org/10.1007/978-3-030-35020-8_8

Download citation

Publish with us

Policies and ethics