Skip to main content

The Maximum Nearby Flow Problem

  • Chapter
  • First Online:
  • 581 Accesses

Part of the book series: AIRO Springer Series ((AIROSS,volume 3))

Abstract

We present a new Linear Programming model that formulates the problem of computing the Kantorovich-Wasserstein distance associated with a truncated ground distance. The key idea of our model is to consider only the quantity of mass that is transported to nearby points and to ignore the quantity of mass that should be transported between faraway pairs of locations. The proposed model has a number of variables that depends on the threshold value used in the definition of the set of nearby points. Using a small threshold value, we can obtain a significant speedup. We use our model to numerically evaluate the percentage gap between the true Wasserstein distance and the truncated Wasserstein distance, using a set of standard grey scale images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Altschuler, J., Weed, J., Rigollet, P.: Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration. Adv. Neural Inf. Proces. Syst. 1961–1971 (2017)

    Google Scholar 

  2. Amaldi, E., Coniglio, S., Gualandi, S.: Coordinated cutting plane generation via multi-objective separation. Math. Program. 143(1), 87–110 (2014)

    Article  MathSciNet  Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint. arXiv:1701.07875 (2017)

    Google Scholar 

  4. Auricchio, G., Bassetti, F., Gualandi, S., Veneroni, M.: Computing Kantorovich-Wasserstein distances on d-dimensional histograms using (d + 1)-partite graphs. Adv. Neural Inf. Proces. Syst. 5793–5803 (2018)

    Google Scholar 

  5. Bassetti, F., Regazzini, E.: Asymptotic properties and robustness of minimum dissimilarity estimators of location-scale parameters. Theory Probab. Appl. 50(2), 171–186 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bassetti, F., Bodini, A., Regazzini, E.: On minimum Kantorovich distance estimators. Stat. Probab. Lett. 76(12), 1298–1302 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bassetti, F., Gualandi, S., Veneroni, M.: On the computation of Kantorovich-Wasserstein distances between 2D-histograms by uncapacitated minimum cost flows. arXiv preprint, arXiv:1804.00445 (2018)

    Google Scholar 

  8. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  9. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. Adv. Neural Inf. Proces. Syst. 2292–2300 (2013)

    Google Scholar 

  10. Cuturi, M., Doucet, A.: Fast computation of Wasserstein barycenters. In: International Conference on Machine Learning, pp. 685–693 (2014)

    Google Scholar 

  11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)

    MATH  Google Scholar 

  12. Flood, M.M.: On the Hitchcock distribution problem. Pac. J. Math. 3(2), 369–386 (1953)

    Article  MathSciNet  Google Scholar 

  13. Frogner, C., Zhang, C., Mobahi, H., Araya, M., Poggio, T.A.: Learning with a Wasserstein loss. Adv. Neural Inf. Proces. Syst. 2053–2061 (2015)

    Google Scholar 

  14. Goldberg, A.V., Tardos, É., Tarjan, R.: Network flow algorithm. Technical report, Cornell University Operations Research and Industrial Engineering (1989)

    Book  Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New York (2009)

    Google Scholar 

  16. Levina, E., Bickel, P.: The Earth mover’s distance is the Mallows distance: some insights from statistics. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 2, pp. 251–256. IEEE (2001)

    Google Scholar 

  17. Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 840–853 (2007)

    Article  Google Scholar 

  18. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res. 41(2), 338–350 (1993)

    Article  MathSciNet  Google Scholar 

  19. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 460–467. IEEE (2009)

    Google Scholar 

  20. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Sixth International Conference on Computer Vision, 1998, pp. 59–66. IEEE (1998)

    Google Scholar 

  21. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  Google Scholar 

  22. Schrieber, J., Schuhmacher, D., Gottschlich, C.: Dotmark–a benchmark for discrete optimal transport. IEEE Access 5, 271–282 (2017)

    Article  Google Scholar 

  23. Schrijver, A.: On the history of the transportation and maximum flow problems. Math. Program. 91(3), 437–445 (2002)

    Article  MathSciNet  Google Scholar 

  24. Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Wasserstein propagation for semi-supervised learning. In: International Conference on Machine Learning, pp. 306–314 (2014)

    Google Scholar 

  25. Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., Guibas, L.: Convolutional Wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graph. (TOG) 34(4), 66 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Italian Ministry of Education, University and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022)—Dept. of Mathematics “F. Casorati”, University of Pavia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Gualandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auricchio, G., Gualandi, S., Veneroni, M. (2019). The Maximum Nearby Flow Problem. In: Paolucci, M., Sciomachen, A., Uberti, P. (eds) Advances in Optimization and Decision Science for Society, Services and Enterprises. AIRO Springer Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-34960-8_3

Download citation

Publish with us

Policies and ethics