Skip to main content

Peripheral Nerve Stimulation

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery
  • 996 Accesses

Abstract

Peripheral nerve stimulation (PNS) is a safe, adjustable, and reversible treatment option for patients with medically refractory neuropathic pain localized to the distribution of a peripheral nerve. Since its initial introduction in the 1960s following the development of the gate control theory, PNS has been used to treat chronic neuropathic pain in the craniofacial area, the trunk, and the extremities. It is based on the discovery that stimulation of a peripheral nerve activates large-diameter fibers preferentially over smaller diameter pain fibers, resulting in the mitigation of centrally perceived pain. In the decades since its initial clinical application, the electrodes and stimulation parameters employed have continued to evolve. More recently, paresthesia-free stimulation has been described through novel stimulation paradigms including burst and high-frequency stimulation. Currently, in most cases, spinal cord stimulator systems are adapted for peripheral nerve stimulation with the use of multi-contact percutaneous leads placed in proximity to the targeted nerve, although novel purpose-specific PNS systems have begun to emerge. Recently, transcutaneous powered systems specifically designed for PNS have become available. In this chapter, we primarily discuss the physiology of peripheral sensory nerves, theories of pain perception, biophysics of PNS, and clinical applications. In addition, we briefly discuss how peripheral nerve stimulation can modulate central nervous system pathology, with attention given to the treatment of epilepsy and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wall PD, Sweet WH. Temporary abolition of pain in man. Science (80-.). [Internet]. 1967 [cited 2018 Dec 7];155(3758):108–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6015561.

    Article  CAS  PubMed  Google Scholar 

  2. Melzack R, Wall PD. Pain mechanisms: a new theory. Science [Internet]. 1965 [cited 2018 Dec 4];150 (3699):971–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5320816.

    Article  CAS  PubMed  Google Scholar 

  3. Burchiel KJ, Raslan AM. Functional neurosurgery and neuromodulation. 1st ed: Elsevier Health Sciences; 2018.

    Google Scholar 

  4. Kandel ER. Principles of neural science. 5th ed. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. McGraw-Hill Education; 2013.

    Google Scholar 

  5. Moore SP, Psarros TG. The definitive neurological surgery board review: Blackwell Pub; 2005.

    Google Scholar 

  6. Rexed B. A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol. [Internet]. 1954 [cited 2019 Apr 14];100:297–379. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13163236.

    Article  CAS  PubMed  Google Scholar 

  7. Rexed B. The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol. [Internet]. 1952 [cited 2019 Apr 14];96:414–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14946260.

    Article  Google Scholar 

  8. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. [Internet]. Europe PMC Funders; 2010 [cited 2019 Apr 14];11:823–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21068766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burchiel KJ, editor. Surgical management of pain [Internet]. Stuttgart: Georg Thieme Verlag; 2015 [cited 2018 Dec 4]. Available from: http://www.thieme-connect.de/products/ebooks/book/10.1055/b-002-102571.

  10. Dubner R, Sessle B, Storey A. The neural basis of oral and facial function. Dubner R, editor. New York: Plenum; 1978.

    Book  Google Scholar 

  11. Moayedi M, Davis KD. Theories of pain: from specificity to gate control. J Neurophysiol. 2013;109:5–12.

    Article  PubMed  Google Scholar 

  12. Rey R. The history of pain. Cambridge: Harvard University Press; 1995.

    Google Scholar 

  13. Iggo A, Muir AR. The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol. 1969;200:763–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cauna N, Ross L. The fine structure of Meissner’s touch corpuscles of human fingers. J Biophys Biochem Cytol. 1960;8:467–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cauna N, Manna G. The structure of human digital pacinian corpuscles (corpus cula lamellosa) and its functional significance. J Anat. [Internet]. 1958;92:1–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13513492.

  16. Burgess PR, Perl ER. Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol. 1967;190:541–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol. 1969;32:1025–43.

    Article  CAS  PubMed  Google Scholar 

  18. Dallenbach KM. Pain: history and present status. Am J Psychol. 1939;52:331.

    Article  Google Scholar 

  19. Sinclair DC. Cutaneous sensation and the doctrine of specific energy. Brain [Internet]. 1955;78:584–614. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13293271.

    Article  CAS  PubMed  Google Scholar 

  20. Weddell G. Somesthesis and the chemical senses. Annu Rev Psychol. 1955;6:119–36.

    Article  CAS  PubMed  Google Scholar 

  21. Mendell LM. Constructing and deconstructing the gate theory of pain. Pain. 2014;155:210–6.

    Article  PubMed  Google Scholar 

  22. Rudomin P, Schmidt RF. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res. 1999;129:1–37.

    Article  CAS  PubMed  Google Scholar 

  23. Bates JA, Nathan PW. Transcutaneous electrical nerve stimulation for chronic pain. Anaesthesia. 1980;35:817–22.

    Article  CAS  PubMed  Google Scholar 

  24. Nathan PW, Wall PD. Treatment of post-herpetic neuralgia by prolonged electric stimulation. Br Med J. 1974;3:645–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. [Internet]. John Wiley & Sons, Ltd (10.1111); 1952 [cited 2019 Apr 13];117:500–44. Available from: http://doi.wiley.com/10.1113/jphysiol.1952.sp004764.

  26. Goldman DE. Potential, impedance, and rectification in membranes. J Gen Physiol. [Internet]. 1943 [cited 2019 Apr 14];27:37–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19873371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hodgkin A, Rushton W. The electrical constants of a crustacean nerve fibre. Proc R Soc Med. [Internet]. 1946 [cited 2019 Apr 14];134:444–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20281590.

  28. Hodgkin A, Katz B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. [Internet]. Wiley-Blackwell; 1949 [cited 2019 Apr 14];108:37–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18128147.

  29. Grill WM. Nerve Stimulation. Wiley Encycl Biomed Eng. [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006 [cited 2018 Dec 8]. Available from: http://doi.wiley.com/10.1002/9780471740360.ebs0825.

  30. Ahmed S, Yearwood T, De Ridder D, Vanneste S. Burst and high frequency stimulation: underlying mechanism of action. Expert Rev Med Devices. 2018;15:61–70.

    Article  CAS  PubMed  Google Scholar 

  31. Sdrulla AD, Guan Y, Raja SN. Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract. 2018;18:1048–67.

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Ridder D, Perera S, Vanneste S. Are 10 kHz stimulation and burst stimulation fundamentally the same? Neuromodulation. 2017;20:650–3.

    Article  PubMed  Google Scholar 

  33. Chakravarthy K, Nava A, Christo PJ, Williams K. Review of recent advances in Peripheral Nerve Stimulation (PNS) [Internet]. Curr Pain Headache Rep. 2016 [cited 2019 Jan 3]. p. 60. Available from: http://link.springer.com/10.1007/s11916-016-0590-8.

  34. Manning A, Ortega RG, Moir L, Edwards T, Aziz TZ, Bojanic S, et al. Burst or conventional peripheral nerve field stimulation for treatment of neuropathic facial pain. Neuromodulation. 2019;22:645.

    Article  PubMed  Google Scholar 

  35. Kapural L, Mekhail N, Hayek SM, Stanton-Hicks M, Malak O. Occipital nerve electrical stimulation via the midline approach and subcutaneous surgical leads for treatment of severe occipital neuralgia: a pilot study. Anesth Analg. [Internet]. 2005 [cited 2018 Dec 11];101:171–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15976227

    Article  Google Scholar 

  36. Kilgore KL, Bhadra N. Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation. 2014;17:242–54; discussion 254–5.

    Article  PubMed  Google Scholar 

  37. Lempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology. 2015;122:1362–76.

    Article  CAS  PubMed  Google Scholar 

  38. Arle JE, Mei L, Carlson KW, Shils JL. High-frequency stimulation of dorsal column axons: potential underlying mechanism of paresthesia-free neuropathic pain relief. Neuromodulation. 2016;19:385–97.

    Article  PubMed  Google Scholar 

  39. Cuellar JM, Alataris K, Walker A, Yeomans DC, Antognini JF. Effect of high-frequency alternating current on spinal afferent nociceptive transmission. Neuromodulation. 2013;16:318–27; discussion 327.

    Article  PubMed  Google Scholar 

  40. Shechter R, Yang F, Xu Q, Cheong Y-K, He S-Q, Sdrulla A, et al. Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology. 2013;119:422–32.

    Article  PubMed  Google Scholar 

  41. Thomson SJ, Tavakkolizadeh M, Love-Jones S, Patel NK, Gu JW, Bains A, et al. Effects of rate on analgesia in kilohertz frequency spinal cord stimulation: results of the PROCO randomized controlled trial. Neuromodulation. 2018;21:67–76.

    Article  PubMed  Google Scholar 

  42. Slavin K V. History of peripheral nerve stimulation. Prog Neurol Surg. [Internet]. Karger Publishers; 2011 [cited 2018 Dec 4];24:1–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21422772.

  43. Weiner RL, Reed KL. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation [Internet]. 1999 [cited 2018 Dec 12];2:217–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22151211.

  44. Medtronic. Spinal cord stimulation systems | Medtronic [Internet]. [cited 2019 Apr 14]. Available from: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/spinal-cord-stimulation-systems.html.

  45. Nevro. Nevro - offering HF10 therapy for chronic pain relief [Internet]. [cited 2019 Apr 14]. Available from: https://www.nevro.com/English/Home/default.aspx.

  46. Abott. Our products | Abbott Neuromodulation [Internet]. [cited 2019 Apr 14]. Available from: https://www.neuromodulation.abbott/us/en/hcp/products.html.

  47. Boston Scientific. Spectra WaveWriterTM SCS System – Pain Management – Boston Scientific - Boston Scientific [Internet]. [cited 2019 Apr 14]. Available from: https://www.bostonscientific.com/en-US/products/spinal-cord-stimulator-systems/spectra-wavewriter-scs.html.

  48. Deer TR, Levy RM, Verrills P, Mackey S, Abejon D. Perspective: peripheral nerve stimulation and peripheral nerve field stimulation birds of a different feather. Pain Med. [Internet]. Narnia; 2015 [cited 2019 Apr 11];16:411–2. Available from: https://academic.oup.com/painmedicine/article-lookup/doi/10.1111/pme.12662.

    Article  PubMed  Google Scholar 

  49. Deer T, Pope J, Benyamin R, Vallejo R, Friedman A, Caraway D, et al. Prospective, multicenter, randomized, double-blinded, partial crossover study to assess the safety and efficacy of the novel neuromodulation system in the treatment of patients with chronic pain of peripheral nerve origin. Neuromodulation Technol Neural Interface [Internet]. 2016 [cited 2019 Jan 2];19:91–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26799373.

    Article  Google Scholar 

  50. Yu DT, Chae J, Walker ME, Fang Z-P. Percutaneous intramuscular neuromuscular electric stimulation for the treatment of shoulder subluxation and pain in patients with chronic hemiplegia: a pilot study. Arch Phys Med Rehabil. [Internet]. 2001 [cited 2019 Apr 15];82:20–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11239281.

    Article  CAS  PubMed  Google Scholar 

  51. Ilfeld BM, Gilmore CA, Grant SA, Bolognesi MP, Del Gaizo DJ, Wongsarnpigoon A, et al. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study. J Orthop Surg Res. [Internet]. 2017 [cited 2019 Apr 15];12:4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28086940.

  52. Ilfeld BM, Finneran JJ, Gabriel RA, Said ET, Nguyen PL, Abramson WB, et al. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the suprascapular nerve and brachial plexus for postoperative analgesia following ambulatory rotator cuff repair. A proof-of-concept study. Reg Anesth Pain Med. [Internet]. 2019 [cited 2019 Apr 15];rapm-2018-100121. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30770421.

  53. Eljamel S, Neurostimulation SKV. Principles and practice. Chichester: Wiley Blackwell; 2013.

    Google Scholar 

  54. Campbell CM, Jamison RN, Edwards RR. Psychological screening/phenotyping as predictors for spinal cord stimulation. Curr Pain Headache Rep. [Internet]. 2013 [cited 2019 Apr 11];17:307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23247806.

  55. Nayak R, Banik RK. Current innovations in peripheral nerve stimulation. Pain Res Treat. [Internet]. Hindawi; 2018 [cited 2018 Dec 5];2018:1–5. Available from: https://www.hindawi.com/journals/prt/2018/9091216/.

  56. Hoelzer BC, Bendel MA, Deer TR, Eldrige JS, Walega DR, Wang Z, et al. Spinal cord stimulator implant infection rates and risk factors: a multicenter retrospective study. Neuromodulation Technol Neural Interface [Internet]. 2017 [cited 2019 Apr 15];20:558–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28493599.

    Article  Google Scholar 

  57. Deer TR, Provenzano DA, Hanes M, Pope JE, Thomson SJ, Russo MA, et al. The Neurostimulation Appropriateness Consensus Committee (NACC) recommendations for infection prevention and management. Neuromodulation Technol Neural Interface [Internet]. John Wiley & Sons, Ltd (10.1111); 2017 [cited 2019 Apr 15];20:31–50. Available from: http://doi.wiley.com/10.1111/ner.12565.

  58. Ellis JA, Mejia Munne JC, Winfree CJ. Trigeminal branch stimulation for the treatment of intractable craniofacial pain. J Neurosurg. [Internet]. 2015;123:283–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25635476.

    Article  PubMed  Google Scholar 

  59. Slavin K V., Wess C. Trigeminal branch stimulation for intractable neuropathic pain: technical note. Neuromodulation [Internet]. Wiley/Blackwell (10.1111); 2005 [cited 2018 Dec 10];8:7–13. Available from: http://doi.wiley.com/10.1111/j.1094-7159.2005.05215.x.

    Article  Google Scholar 

  60. Slavin K, Colpan M, Munawar N, Wess C. Trigeminal and occipital peripheral nerve stimulation for craniofacial pain: a single-institution experience and review of the literature. Neurosurg Focus [Internet]. 2006 [cited 2018 Dec 19];21:1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17341049.

    Article  Google Scholar 

  61. Dunteman E. Peripheral nerve stimulation for unremitting ophthalmic postherpetic neuralgia. Neuromodulation [Internet]. 2002 [cited 2018 Dec 10];5:32–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22151779.

  62. Johnson MD, Burchiel KJ. Peripheral stimulation for treatment of trigeminal postherpetic neuralgia and trigeminal posttraumatic neuropathic pain: a pilot study. Neurosurgery [Internet]. 2004 [cited 2018 Dec 28];55:135–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15214982.

  63. Stidd DA, Wuollet AL, Bowden K, Price T, Patwardhan A, Barker S, et al. Peripheral nerve stimulation for trigeminal neuropathic pain. Pain Physician [Internet]. [cited 2018 Dec 28];15:27–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22270735.

  64. Narouze SN, Kapural L. Supraorbital nerve electric stimulation for the treatment of intractable chronic cluster headache: A case report. Headache [Internet]. John Wiley & Sons, Ltd; 2007 [cited 2018 Dec 10];47:1100–2. Available from: http://doi.wiley.com/10.1111/j.1526-4610.2007.00869.x.

  65. Amin S, Buvanendran A, Park K-S, Kroin JS, Moric M. Peripheral nerve stimulator for the treatment of supraorbital neuralgia: a retrospective case series. Cephalalgia [Internet]. 2008 [cited 2018 Dec 10];28:355–9. Available from: https://journals.sagepub.com/doi/pdf/10.1111/j.1468-2982.2008.01535.x.

  66. Feletti A, Santi GZ, Sammartino F, Bevilacqua M, Cisotto P, Longatti P. Peripheral trigeminal nerve field stimulation: report of 6 cases. Neurosurg Focus [Internet]. 2013 [cited 2018 Dec 11];35:E10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23991813.

    Article  PubMed  Google Scholar 

  67. Johnstone CSH, Sundaraj R. Occipital nerve stimulation for the treatment of occipital neuralgia - eight case studies. Neuromodulation [Internet]. 2006 [cited 2018 Dec 11];9:41–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22151592.

    Article  Google Scholar 

  68. Lorenzo-Martin C, Ajayi O, Erdemir A, Wei R. Tribological performance of quaternary CrSiCN coatings under dry and lubricated conditions. Wear [Internet]. 2017 [cited 2018 Dec 18];376–377:1682–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16385335.

  69. Oh MY, Ortega J, Bellotte JB, Whiting DM, Aló K. Peripheral nerve stimulation for the treatment of occipital neuralgia and transformed migraine using a C1-2-3 subcutaneous paddle style electrode: a technical report. Neuromodulation [Internet]. 2004 [cited 2018 Dec 17];7:103–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22151191.

    Article  Google Scholar 

  70. Palmisani S, Al-Kaisy A, Arcioni R, Smith T, Negro A, Lambru G, et al. A six year retrospective review of occipital nerve stimulation practice - controversies and challenges of an emerging technique for treating refractory headache syndromes. J Headache Pain [Internet]. 2013 [cited 2018 Dec 18];14:67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23919570.

  71. Abhinav K, Park ND, Prakash SK, Love-Jones S, Patel NK. Novel use of narrow paddle electrodes for occipital nerve stimulation - technical note. Neuromodulation [Internet]. 2013 [cited 2018 Dec 18];16:607–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23106950.

  72. Melvin EA, Jordan FR, Weiner RL, Primm D. Using peripheral stimulation to reduce the pain of C2-mediated occipital headaches: a preliminary report. Pain Physician [Internet]. 2007 [cited 2018 Dec 11];10:453–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17525779.

  73. Schwedt TJ, Dodick DW, Hentz J, Trentman TL, Zimmerman RS. Occipital nerve stimulation for chronic headache – Long-term safety and efficacy. Cephalalgia [Internet]. SAGE PublicationsSage UK: London, England; 2007 [cited 2018 Dec 25];27:153–7. Available from: http://journals.sagepub.com/doi/10.1111/j.1468-2982.2007.01272.x.

  74. Dodick DW, Trentman TL, Zimmerman RSEE. Occipital nerve stimulation for intractable chronic primary headache disorders. Cephalalgia. 2003;23:701.

    Google Scholar 

  75. Magis D, Allena M, Bolla M, De Pasqua V, Remacle JM, Schoenen J. Occipital nerve stimulation for drug-resistant chronic cluster headache: a prospective pilot study. Lancet Neurol. [Internet]. 2007 [cited 2018 Dec 17];6:314–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17362835.

    Article  PubMed  Google Scholar 

  76. Chen YF, Bramley G, Unwin G, Hanu-Cernat D, Dretzke J, Moore D, et al. Occipital nerve stimulation for chronic migraine-A systematic review and meta-analysis. Sommer C, editor. PLoS One [Internet]. Public Library of Science; 2015 [cited 2018 Dec 19];10:e0116786. Available from: http://dx.plos.org/10.1371/journal.pone.0116786.

  77. Lipton R, Goadsby PJ, Cady R, Aurora SK, Grosberg BM, et al. PO47 PRISM study: occipital nerve stimulation for treatment-refractory migraine. Cephalalgia [Internet]. Blackwell Publishing Ltd Cephalalgia; 2009;29:30. Available from: http://journals.sagepub.com/doi/pdf/10.1111/J.1468-2982.2009.01960.X.

  78. Saper JR, Dodick DW, Silberstein SD, McCarville S, Sun M, Goadsby PJ. Occipital nerve stimulation for the treatment of intractable chronic migraine headache: ONSTIM feasibility study. Cephalalgia [Internet]. SAGE Publications; 2011 [cited 2018 Dec 11];31:271–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20861241.

  79. Silberstein SD, Dodick DW, Saper J, Huh B, Slavin K V, Sharan A, et al. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia [Internet]. 2012 [cited 2018 Dec 11];32:1165–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23034698.

    Article  PubMed  Google Scholar 

  80. Dodick DW, Silberstein SD, Reed KL, Deer TR, Slavin K V, Huh B, et al. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: long-term results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia [Internet]. 2015 [cited 2018 Dec 11];35:344–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25078718.

    Article  PubMed  Google Scholar 

  81. Magown P, Garcia R, Beauprie I, Mendez IM. Occipital nerve stimulation for intractable occipital neuralgia: an open surgical technique. Clin Neurosurg. [Internet]. 2009 [cited 2018 Dec 17];56:119–24. Available from: https://www.reedmigraine.com/wp-content/uploads/2018/04/Occipital-Nerve-Stimulation-Neuralgia-Magown-2009.pdf.

  82. Sherman RA, Sherman CJ. Prevalence and characteristics of chronic phantom limb pain among American veterans. Results of a trial survey. Am J Phys Med. [Internet]. 1983 [cited 2018 Dec 25];62:227–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6624883.

  83. Sherman RA, Sherman CJ, Parker L. Chronic phantom and stump pain among american veterans: results of a survey. Pain [Internet]. 1984 [cited 2018 Dec 25];18:83–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6709380.

    Article  CAS  PubMed  Google Scholar 

  84. Sherman RA, Sherman CJ, Gall NG. A survey of current phantom limb pain treatment in the United States. Pain [Internet]. 1980 [cited 2018 Dec 25];8:85–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6988765.

  85. Jahangiri M, Jayatunga AP, Bradley JWP, Dark CH. Prevention of phantom pain after major lower limb amputation by epidural infusion of diamorphine, clonidine and bupivacaine. Ann R Coll Surg Engl. [Internet]. Royal College of Surgeons of England; 1994 [cited 2018 Dec 25];76:324–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7979074.

  86. Rosenquist RHN. Phantom limb pain. In: Benzon HT, Rathmell JP, Wu CLT, DC AC, editors. Raj’s practical management of pain. Philadelphia: Mosby Elsevier; 2008. p. 445–53.

    Chapter  Google Scholar 

  87. Ehde DM, Czerniecki JM, Smith DG, Campbell KM, Edwards WT, Jensen MP, et al. Chronic phantom sensations, phantom pain, residual limb pain, and other regional pain after lower limb amputation. Arch Phys Med Rehabil. [Internet]. 2000 [cited 2018 Dec 25];81:1039–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10943752.

    Article  CAS  PubMed  Google Scholar 

  88. Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees: results of a national survey [Internet]. Arch Phys Med Rehabil. 2005 [cited 2018 Dec 25]. p. 1910–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16213230.

    Article  PubMed  Google Scholar 

  89. Millstein S, Bain D, Hunter GA. A review of employment patterns of industrial amputees—factors influencing rehabilitation. Prosthet Orthot Int. [Internet]. 1985 [cited 2018 Dec 26];9:69–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4047922.

    Article  CAS  PubMed  Google Scholar 

  90. Whyte AS, Carroll LJ. A preliminary examination of the relationship between employment, pain and disability in an amputee population. Disabil Rehabil. [Internet]. 2002 [cited 2018 Dec 26];24:462–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12097215.

    Article  CAS  PubMed  Google Scholar 

  91. Rudy TE, Lieber SJ, Boston JR, Gourley LM, Baysal E. Psychosocial predictors of physical performance in disabled individuals with chronic pain [Internet]. Clin J Pain. The Clinical Journal of Pain; 2003 [cited 2018 Dec 26]. p. 18–30. Available from: https://insights.ovid.com/pubmed?pmid=12514453.

    Article  PubMed  Google Scholar 

  92. Rauck RL, Cohen SP, Gilmore CA, North JM, Kapural L, Zang RH, et al. Treatment of post-amputation pain with peripheral nerve stimulation. Neuromodulation [Internet]. 2014 [cited 2018 Dec 11];17:188–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23947830.

    Article  Google Scholar 

  93. Soin A, Syed Shah N, Fang ZP. High-frequency electrical nerve block for postamputation pain: a pilot study. Neuromodulation [Internet]. 2015 [cited 2018 Dec 25];18:197–205. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25655583.

  94. Deogaonkar M, Slavin K V. Peripheral nerve/field stimulation for neuropathic pain. Neurosurg Clin N Am. [Internet]. 2014 [cited 2019 Apr 11];25:1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24262894.

    Article  PubMed  Google Scholar 

  95. Verrills P, Vivian D, Mitchell B, Barnard A. Peripheral nerve field stimulation for chronic pain: 100 cases and review of the literature. Pain Med. [Internet]. Oxford University Press; 2011 [cited 2018 Dec 5];12:1395–405. Available from: https://academic.oup.com/painmedicine/article-lookup/doi/10.1111/j.1526-4637.2011.01201.x.

  96. Bari A, Pouratian N. Brain imaging correlates of peripheral nerve stimulation. Surg Neurol Int. 2012;3:260.

    Article  Google Scholar 

  97. Liu W-C, Mosier K, Kalnin AJ, Marks D. BOLD fMRI activation induced by vagus nerve stimulation in seizure patients. J Neurol Neurosurg Psychiatry. 2003;74:811–3.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Barnes A, Duncan R, Chisholm JA, Lindsay K, Patterson J, Wyper D. Investigation into the mechanisms of vagus nerve stimulation for the treatment of intractable epilepsy, using 99mTc-HMPAO SPET brain images. Eur J Nucl Med Mol Imaging. 2003;30:301–5.

    Article  PubMed  Google Scholar 

  99. Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia. 2001;42:967–78.

    Article  CAS  PubMed  Google Scholar 

  100. Bohning DE, Lomarev MP, Denslow S, Nahas Z, Shastri A, George MS. Feasibility of vagus nerve stimulation-synchronized blood oxygenation level-dependent functional MRI. Investig Radiol. 2001;36:470–9.

    Article  CAS  Google Scholar 

  101. Bosch JL, Groen J. Sacral nerve neuromodulation in the treatment of patients with refractory motor urge incontinence: long-term results of a prospective longitudinal study. J Urol. 2000;163:1219–22.

    Article  CAS  PubMed  Google Scholar 

  102. Conway CR, Sheline YI, Chibnall JT, Bucholz RD, Price JL, Gangwani S, et al. Brain blood-flow change with acute vagus nerve stimulation in treatment-refractory major depressive disorder. Brain Stimul. 2012;5:163–71.

    Article  PubMed  Google Scholar 

  103. Garnett ES, Nahmias C, Scheffel A, Firnau G, Upton AR. Regional cerebral blood flow in man manipulated by direct vagal stimulation. Pacing Clin Electrophysiol. 1992;15:1579–80.

    Article  CAS  PubMed  Google Scholar 

  104. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.

    Article  CAS  PubMed  Google Scholar 

  105. Nahas Z, Marangell LB, Husain MM, Rush AJ, Sackeim HA, Lisanby SH, et al. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry. 2005;66:1097–104.

    Article  PubMed  Google Scholar 

  106. Zempleni M-Z, Michels L, Mehnert U, Schurch B, Kollias S. Cortical substrate of bladder control in SCI and the effect of peripheral pudendal stimulation. NeuroImage. 2010;49:2983–94.

    Article  PubMed  Google Scholar 

  107. Mehnert U, Boy S, Svensson J, Michels L, Reitz A, Candia V, et al. Brain activation in response to bladder filling and simultaneous stimulation of the dorsal clitoral nerve--an fMRI study in healthy women. NeuroImage. 2008;41:682–9.

    Article  PubMed  Google Scholar 

  108. Lundby L, Møller A, Buntzen S, Krogh K, Vang K, Gjedde A, et al. Relief of fecal incontinence by sacral nerve stimulation linked to focal brain activation. Dis Colon Rectum. 2011;54:318–23.

    Article  PubMed  Google Scholar 

  109. DasGupta R. Different brain effects during chronic and acute sacral neuromodulation in urge incontinent patients with implanted neurostimulators. BJU Int. 2007;99:700.

    Article  PubMed  Google Scholar 

  110. Panebianco M, Zavanone C, Dupont S, Restivo DA, Pavone A. Vagus nerve stimulation therapy in partial epilepsy: a review. Acta Neurol Belg. 2016;116:241–8.

    Article  PubMed  Google Scholar 

  111. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder. JAMA. 2003;289:3095.

    Article  PubMed  Google Scholar 

  112. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR∗D report. Am J Psychiatry. 2006;163:1905–17.

    Article  PubMed  Google Scholar 

  113. Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia. 33:1005–12.

    Article  CAS  PubMed  Google Scholar 

  114. Uthman BM. Vagus nerve stimulation for seizures. Arch Med Res. Elsevier;. 2000;31:300–3.

    Article  CAS  PubMed  Google Scholar 

  115. Chakravarthy K, Chaudhry H, Williams K, Christo PJ. Review of the uses of vagal nerve stimulation in chronic pain management. Curr Pain Headache Rep. Springer US;. 2015;19:54.

    Article  PubMed  Google Scholar 

  116. Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res. 2000;42:203–10.

    Article  CAS  PubMed  Google Scholar 

  117. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, et al. Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry. 2000;47:276–86.

    Article  CAS  PubMed  Google Scholar 

  118. Carreno FR, Frazer A. Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics. 2017;14:716–27.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Aaronson ST, Sears P, Ruvuna F, Bunker M, Conway CR, Dougherty DD, et al. A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: comparison of response, remission, and suicidality. Am J Psychiatry. 2017;174:640–8.

    Article  PubMed  Google Scholar 

  120. Müller HHO, Lücke C, Moeller S, Philipsen A, Sperling W. Efficacy and long-term tuning parameters of vagus nerve stimulation in long-term treated depressive patients. J Clin Neurosci. 2017;44:340–1.

    Article  PubMed  Google Scholar 

  121. Lv H, Zhao Y-H, Chen J-G, Wang D-Y, Chen H, et al. Front Psychol. Frontiers Media SA;. 2019;10:64.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gorgulho AA, Fernandes F, Damiani LP, Barbosa DAN, Cury A, Lasagno CM, et al. Double blinded randomized trial of subcutaneous trigeminal nerve stimulation as adjuvant treatment for major unipolar depressive disorder. Neurosurgery. 2019;85(5):717–28.

    Article  PubMed  Google Scholar 

  123. Fanselow EE, Reid AP, Nicolelis MA. Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. J Neurosci. 2000;20:8160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. DeGiorgio CM, Shewmon DA, Whitehurst T. Trigeminal nerve stimulation for epilepsy. Neurology. 2003;61:421–2.

    Article  PubMed  Google Scholar 

  125. DeGiorgio CM, Shewmon A, Murray D, Whitehurst T. Pilot study of Trigeminal Nerve Stimulation (TNS) for epilepsy: a proof-of-concept trial. Epilepsia. 2006;47:1213–5.

    Article  PubMed  Google Scholar 

  126. DeGiorgio CM, Murray D, Markovic D, Whitehurst T. Trigeminal nerve stimulation for epilepsy: long-term feasibility and efficacy. Neurology. 2009;72:936–8.

    Article  PubMed  Google Scholar 

  127. DeGiorgio CM, Soss J, Cook IA, Markovic D, Gornbein J, Murray D, et al. Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology. 2013;80:786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Slaght SJ, Nashef L. An audit of external trigeminal nerve stimulation (eTNS) in epilepsy. Seizure. 2017;52:60–2.

    Article  PubMed  Google Scholar 

  129. Olivié L, Giraldez BG, Sierra-Marcos A, Díaz-Gómez E, Serratosa JM. External trigeminal nerve stimulation: a long term follow up study. Seizure. W.B. Saunders;. 2019;69:218–20.

    Article  PubMed  Google Scholar 

  130. DeGiorgio CM, Fanselow EE, Schrader LM, Cook IA. Trigeminal nerve stimulation: seminal animal and human studies for epilepsy and depression. Neurosurg Clin N Am. 2011;22:449–56.

    Article  PubMed  Google Scholar 

  131. Cook IA, Schrader LM, DeGiorgio CM, Miller PR, Maremont ER, Leuchter AF. Trigeminal nerve stimulation in major depressive disorder: acute outcomes in an open pilot study. Epilepsy Behav. 2013;28:221–6.

    Article  PubMed  Google Scholar 

  132. Shiozawa P, da Silva ME, Netto GTM, Taiar I, Cordeiro Q. Effect of a 10-day trigeminal nerve stimulation (TNS) protocol for treating major depressive disorder: a phase II, sham-controlled, randomized clinical trial. Epilepsy Behav. Academic Press;. 2015;44:23–6.

    Article  PubMed  Google Scholar 

  133. Generoso MB, Taiar IT, Garrocini LP, Bernardon R, Cordeiro Q, Uchida RR, et al. Effect of a 10-day transcutaneous trigeminal nerve stimulation (TNS) protocol for depression amelioration: a randomized, double blind, and sham-controlled phase II clinical trial. Epilepsy Behav. 2019;95:39–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ausaf A. Bari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rohatgi, P., Chivukula, S., Kashanian, A., Bari, A.A. (2020). Peripheral Nerve Stimulation. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics