Skip to main content

Antiarrhythmic Properties of Non-Antiarrhythmic Drugs in Atrial Fibrillation: Upstream Therapy

  • Chapter
  • First Online:
Antiarrhythmic Drugs

Part of the book series: Current Cardiovascular Therapy ((CCT))

  • 924 Accesses

Abstract

Traditionally, antiarrhythmic strategies have focused almost exclusively on atrial electrophysiological alterations. Unfortunately, these interventions yield very limited success over the long-term and have a high side-effect profile. A number of ‘non-antiarrhythmic’ drugs (i.e., whose main effect is not exerted at ion channel level) have gained increasing attention due to their potential to prevent, delay, or even reverse atrial fibrillation (AF)-related atrial structural remodeling, while lacking the undesirable effects of ion channel blockers. By modifying the substrate upstream of AF, these new strategies are expected to prevent new-onset AF, to delay AF transition to more persistent forms, and/or to prevent recurrent AF. However, to date, with very few the exceptions, there is insufficient evidence to support the wide use of non-conventional antiarrhythmic drugs for AF prophylaxis in clinical practice. It still remains to be established whether this approach is truly effective, by itself or at least in addition to conventional rhythm control strategies. Clarification of the most adequate target population, of the most suitable drug, dose, and timing to intervene is also required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lip GY, Tse HF, Lane DA. Atrial fibrillation. Lancet. 2012;379:648–61.

    Article  PubMed  Google Scholar 

  2. Reynolds MR, Essebag V, Zimetbaum P, et al. Healthcare resource utilization and costs associated with recurrent episodes of atrial fibrillation: the FRACTAL registry. J Cardiovasc Electrophysiol. 2007;18:628–33.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ehrlich JR, Nattel S. Novel approaches for pharmacological management of atrial fibrillation. Drugs. 2009;69:757–74.

    Article  CAS  PubMed  Google Scholar 

  4. Aviles RJ, Martin DO, Apperson-Hansen C, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108:3006–10.

    Article  PubMed  Google Scholar 

  5. Disertori M, Latini R, Maggioni AP. Role of renin–angiotensin system inhibitors in atrial fibrillation. J Cardiovasc Med. 2010;11:912–8.

    Article  Google Scholar 

  6. Mayyas F, Alzoubi KH, Van Wagoner DR. Impact of aldosterone antagonists on the substrate for atrial fibrillation: aldosterone promotes oxidative stress and atrial structural/electrical remodeling. Int J Cardiol. 2013;168:5135–42.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frustaci A, Chimenti C, Bellocci F, et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997;96:1180–4.

    Article  CAS  PubMed  Google Scholar 

  8. Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation. 2004;109:363–8.

    Article  CAS  PubMed  Google Scholar 

  9. Schotten U, Verheule S, Kirchhof P, et al. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91:265–325.

    Article  PubMed  Google Scholar 

  10. Mihm MJ, Coyle CM, Schanbacher BL, et al. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc Res. 2001;49:798–807.

    Article  CAS  PubMed  Google Scholar 

  11. Kim YM, Guzik TJ, Zhang YH, et al. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res. 2005;97:629–36.

    Article  CAS  PubMed  Google Scholar 

  12. Briggs LE, Takeda M, Cuadra AE, et al. Perinatal loss of Nkx2-5 results in rapid conduction and contraction defects. Circ Res. 2008;103:580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babu GJ, Bhupathy P, Carnes CA, et al. Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology. J Mol Cell Cardiol. 2007;43:215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carnes CA, Chung MK, Nakayama T, et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 2001;89:E32–8.

    Article  CAS  PubMed  Google Scholar 

  15. Morgera T, Di Lenarda A, Dreas L, et al. Electrocardiography of myocarditis revisited: clinical and prognostic significance of electrocardiographic changes. Am Heart J. 1992;124:455–67.

    Article  CAS  PubMed  Google Scholar 

  16. Bruins P, te Velthuis H, Yazdanbakhs AP, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: post-surgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 1997;96:3542–8.

    Article  CAS  PubMed  Google Scholar 

  17. Dernellis J, Panaretou M. C-reactive protein and paroxysmal atrial fibrillation: evidence of the implication of an inflammatory process in paroxysmal atrial fibrillation. Acta Cardiol. 2001;56:375–80.

    Article  CAS  PubMed  Google Scholar 

  18. Gedikli O, Dogan A, Altuntas I, et al. Inflammatory markers according to types of atrial fibrillation. Int J Cardiol. 2007;120:193–7.

    Article  PubMed  Google Scholar 

  19. Scridon A, Girerd N, Rugeri L, et al. Progressive endothelial damage revealed by multilevel von Willebrand factor plasma concentrations in atrial fibrillation patients. Europace. 2013;15:1562–6.

    Article  PubMed  Google Scholar 

  20. Healey JS, Baranchuk A, Crystal E, et al. Prevention of atrial fibrillation with angiotensin converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol. 2005;45:1832–9.

    Article  CAS  PubMed  Google Scholar 

  21. Siu CW, Lau CP, Tse HF. Prevention of atrial fibrillation recurrence by statin therapy in patients with lone atrial fibrillation after successful cardioversion. Am J Cardiol. 2003;92:1343–5.

    Article  CAS  PubMed  Google Scholar 

  22. Ito H, Ono K, Nishio R, et al. Amiodarone inhibits interleukin 6 production and attenuates myocardial injury induced by viral myocarditis in mice. Cytokine. 2002;17:197–202.

    Article  CAS  PubMed  Google Scholar 

  23. Merritt JC, Niebauer M, Tarakji K, et al. Comparison of effectiveness of carvedilol versus metoprolol or atenolol for atrial fibrillation appearing after coronary artery bypass grafting or cardiac valve operation. Am J Cardiol. 2003;92:735–6.

    Article  CAS  PubMed  Google Scholar 

  24. Scridon A, Dobreanu D, Chevalier P, et al. Inflammation, a link between obesity and atrial fibrillation. Inflamm Res. 2015;64:383–93.

    Article  CAS  PubMed  Google Scholar 

  25. Lendeckel UDD, Goette A. Aldosterone-receptor antagonism as a potential therapeutic option for atrial fibrillation. Br J Pharmacol. 2010;159:1581–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boldt A, Wetzel U, Weigl J, et al. Expression of angiotensin II receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease. J Am Coll Cardiol. 2003;42:1785–92.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai CT, Chiang FT, Tseng CD, et al. Increased expression of mineralocorticoid receptor in human atrial fibrillation and a cellular model of atrial fibrillation. J Am Coll Cardiol. 2010;55:758–70.

    Article  CAS  PubMed  Google Scholar 

  28. Goette A, Hoffmanns P, Enayati W, et al. Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation. Am J Cardiol. 2001;88:906–9.

    Article  CAS  PubMed  Google Scholar 

  29. Dixen U, Ravn L, Soeby-Rasmussen C, et al. Raised plasma aldosterone and natriuretic peptides in atrial fibrillation. Cardiology. 2007;108:35–9.

    Article  CAS  PubMed  Google Scholar 

  30. Liu T, Korantzopoulos P, Xu G, et al. Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and atrial fibrillation: a meta-analysis. Europace. 2011;13:346–54.

    Article  PubMed  Google Scholar 

  31. Ueberham L, Bollmann A, Shoemaker MB, et al. Genetic ACE I/D polymorphism and recurrence of atrial fibrillation after catheter ablation. Circ Arrhythm Electrophysiol. 2013;6:732–7.

    Article  CAS  PubMed  Google Scholar 

  32. Amir O, Amir RE, Paz H, et al. Aldosterone synthase gene polymorphism as a determinant of atrial fibrillation in patients with heart failure. Am J Cardiol. 2008;102:326–9.

    Article  CAS  PubMed  Google Scholar 

  33. Dobaczewski M, Bujak M, Li N, et al. SMAD3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res. 2010;107:418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brilla CG, Zhou G, Matsubara L, et al. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol. 1994;26:809–20.

    Article  CAS  PubMed  Google Scholar 

  35. Weber KT. Aldosterone and spironolactone in heart failure. N Engl J Med. 1999;341:753–5.

    Article  CAS  PubMed  Google Scholar 

  36. Marney AM, Brown NJ. Aldosterone and end-organ damage. Clin Sci (Lond). 2007;113:267–78.

    Article  CAS  Google Scholar 

  37. Johar S, Cave AC, Narayanapanicker A, et al. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006;20:1546–8.

    Article  CAS  PubMed  Google Scholar 

  38. Gekle M, Mildenberger S, Freudinger R, et al. Altered collagen homeostasis in human aortic smooth muscle cells (HAoSMCs) induced by aldosterone. Pflugers Arch. 2007;454:403–13.

    Article  CAS  PubMed  Google Scholar 

  39. Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102:1388–93.

    Article  CAS  PubMed  Google Scholar 

  40. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  41. Cardin S, Li D, Thorin-Trescases N, et al. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin dependent and independent pathways. Cardiovasc Res. 2003;60:315–25.

    Article  CAS  PubMed  Google Scholar 

  42. Burniston JG, Saini A, Tan LB, et al. Aldosterone induces myocyte apoptosis in the heart and skeletal muscles of rats in vivo. J Mol Cell Cardiol. 2005;39:395–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hirono Y, Yoshimoto T, Suzuki N, et al. Angiotensin II receptor type 1-mediated vascular oxidative stress and proinflammatory gene expression in aldosterone-induced hypertension: the possible role of local renin-angiotensin system. Endocrinology. 2007;148:1688–96.

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi N, Yoshida K, Nakano S, et al. Cardioprotective mechanisms of eplerenone on cardiac performance and remodeling in failing rat hearts. Hypertension. 2006;47:671–9.

    Article  CAS  PubMed  Google Scholar 

  45. Klanke B, Cordasic N, Hartner A, et al. Blood pressure versus direct mineralocorticoid effects on kidney inflammation and fibrosis in DOCA-salt hypertension. Nephrol Dial Transplant. 2008;23:3456–63.

    Article  CAS  PubMed  Google Scholar 

  46. López B, Querejeta R, Varo N, et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001;104:286–91.

    Article  PubMed  Google Scholar 

  47. Milliez P, Deangelis N, Rucker-Martin C, et al. Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction. Eur Heart J. 2005;26:2193–9.

    Article  CAS  PubMed  Google Scholar 

  48. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10:15–22.

    Article  CAS  PubMed  Google Scholar 

  49. Schmidt BM, Schmieder RE. Aldosterone-induced cardiac damage: focus on blood pressure independent effects. Am J Hypertens. 2003;16:80–6.

    Article  CAS  PubMed  Google Scholar 

  50. Rocha R, Stier CT Jr, Kifor I, et al. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology. 2000;141:3871–8.

    Article  CAS  PubMed  Google Scholar 

  51. Cooper SA, Whaley-Connell A, Habibi J, et al. Renin–angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol. 2007;293:H2009–23.

    Article  CAS  PubMed  Google Scholar 

  52. Kobayashi N, Fukushima H, Takeshima H, et al. Effect of eplerenone on endothelial progenitor cells and oxidative stress in ischemic hindlimb. Am J Hypertens. 2010;23:1007–13.

    Article  CAS  PubMed  Google Scholar 

  53. Bayorh MA, Mann G, Walton M, et al. Effects of enalapril, tempol, and eplerenone on saltinduced hypertension in Dahl salt-sensitive rats. Clin Exp Hypertens. 2006;28:121–32.

    Article  CAS  PubMed  Google Scholar 

  54. Ceron CS, Castro MM, Rizzi E, et al. Spironolactone and hydrochlorothiazide exert antioxidant effects and reduce vascular matrix metalloproteinase-2 activity and expression in a model of renovascular hypertension. Br J Pharmacol. 2010;160:77–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Habibi J, DeMarco VG, Ma L, et al. Mineralocorticoid receptor blockade improves diastolic function independent of blood pressure reduction in a transgenic model of RAAS overexpression. Am J Physiol Heart Circ Physiol. 2011;300:H1484–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lastra G, Whaley-Connell A, Manrique C, et al. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am J Physiol Endocrinol Metab. 2008;295:E110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Benitah JP, Vassort G. Aldosterone upregulates Ca(2+) current in adult rat cardiomyocytes. Circ Res. 1999;85:1139–45.

    Article  CAS  PubMed  Google Scholar 

  58. Lalevee N, Rebsamen MC, Barrere-Lemaire S, et al. Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes. Cardiovasc Res. 2005;67:216–24.

    Article  CAS  PubMed  Google Scholar 

  59. Chen YJ, Chen YC, Tai CT, et al. Angiotensin II and angiotensin II receptor blocker modulate the arrhythmogenic activity of pulmonary veins. Br J Pharmacol. 2006;147:12–22.

    Article  CAS  PubMed  Google Scholar 

  60. Goette A, Lendeckel U. Electrophysiological effects of angiotensin II. Part I: signal transduction and basic electrophysiological mechanisms. Europace. 2008;10:238–41.

    Article  PubMed  Google Scholar 

  61. Nakashima H, Kumagai K, Urata H, et al. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation. 2000;101:2612–7.

    Article  CAS  PubMed  Google Scholar 

  62. Perrier R, Richard S, Sainte-Marie Y, et al. A direct relationship between plasma aldosterone and cardiac L-type Ca2+ current in mice. J Physiol. 2005;569:153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gómez AM, Rueda A, Sainte-Marie Y, et al. Mineralocorticoid modulation of cardiac ryanodine receptor activity is associated with downregulation of FK506-binding proteins. Circulation. 2009;119:2179–87.

    Article  PubMed  CAS  Google Scholar 

  64. Lammers C, Dartsch T, Brandt MC, et al. Spironolactone prevents aldosterone induced increased duration of atrial fibrillation in rat. Cell Physiol Biochem. 2012;29:833–40.

    Article  CAS  PubMed  Google Scholar 

  65. Mihailidou AS, Bundgaard H, Mardini M, et al. Hyperaldosteronemia in rabbits inhibits the cardiac sarcolemmal Na(+)-K(+). Circ Res. 2000;86:37–42.

    Article  CAS  PubMed  Google Scholar 

  66. Benitah JP, Perrier E, Gomez AM, et al. Effects of aldosterone on transient outward K+ current density in rat ventricular myocytes. J Physiol. 2001;537:151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Laszlo R, Bentz K, Konior A, et al. Effects of selective mineralocorticoid receptor antagonism on atrial ion currents and early ionic tachycardia-induced electrical remodelling in rabbits. Naunyn Schmiedeberg's Arch Pharmacol. 2010;382:347–56.

    Article  CAS  Google Scholar 

  68. Qu J, Volpicelli FM, Garcia LI, et al. Gap junction remodeling and spironolactone-dependent reverse remodeling in the hypertrophied heart. Circ Res. 2009;104:365–71.

    Article  CAS  PubMed  Google Scholar 

  69. Takemoto Y, Ramirez RJ, Kaur K, et al. Eplerenone reduces atrial fibrillation burden without preventing atrial electrical remodeling. J Am Coll Cardiol. 2017;70:2893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Musa H, Kaur K, O’Connell R, et al. Inhibition of platelet-derived growth factor-AB signaling prevents electromechanical remodeling of adult atrial myocytes that contact myofibroblasts. Heart Rhythm. 2013;10:1044–51.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kaur K, Zarzoso M, Ponce-Balbuena D, et al. TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes. PLoS One. 2013;8:e55391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Konno S, Hirooka Y, Kishi T, et al. Sympathoinhibitory effects of telmisartan through the reduction of oxidative stress in the rostral ventrolateral medulla of obesity-induced hypertensive rats. J Hypertens. 2012;30:1992–9.

    Article  CAS  PubMed  Google Scholar 

  73. Lewandowski J, Abramczyk P, Dobosiewicz A, et al. The effect of enalapril and telmisartan on clinical and biochemical indices of sympathetic activity in hypertensive patients. Clin Exp Hypertens. 2008;30:423–32.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao J, Li J, Li W, et al. Effects of spironolactone on atrial structural remodelling in a canine model of atrial fibrillation produced by prolonged atrial pacing. Br J Pharmacol. 2010;159:1584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li D, Shinagawa K, Pang L, et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 2001;104:2608–14.

    Article  CAS  PubMed  Google Scholar 

  76. Liu E, Xu Z, Li J, et al. Enalapril, irbesartan, and angiotensin-(1–7) prevent atrial tachycardia-induced ionic remodeling. Int J Cardiol. 2011;146:364–70.

    Article  PubMed  Google Scholar 

  77. Li Y, Li WM, Gong YT, et al. The effects of cilazapril and valsartan on the mRNA and protein expressions of atrial calpains and atrial structural remodeling in atrial fibrillation dogs. Basic Res Cardiol. 2007;102:245–56.

    Article  CAS  PubMed  Google Scholar 

  78. Kimura S, Ito M, Tomita M, et al. Role of mineralocorticoid receptor on atrial structural remodeling and inducibility of atrial fibrillation in hypertensive rats. Hypertens Res. 2011;34:584–91.

    Article  CAS  PubMed  Google Scholar 

  79. Shroff SC, Ryu K, Martovitz NL, et al. Selective aldosterone blockade suppresses atrial tachyarrhythmias in heart failure. J Cardiovasc Electrophysiol. 2006;17:534–41.

    Article  PubMed  Google Scholar 

  80. Yang SS, Han W, Zhou HY, et al. Effects of spironolactone on electrical and structural remodeling of atrium in congestive heart failure dogs. Chin Med J. 2008;121:38–42.

    Article  CAS  PubMed  Google Scholar 

  81. Birnie DH, Gollob M, Healey JS. Clinical trials, the renin angiotensin system and atrial fibrillation. Curr Opin Cardiol. 2006;21:368–75.

    Article  PubMed  Google Scholar 

  82. Maggioni AP, Latini R, Carson PE, et al. Valsartan reduces the incidence of atrial fibrillation in patients with heart failure: results from the Valsartan Heart Failure Trial (Val-HeFT). Am Heart J. 2005;149:548–57.

    Article  CAS  PubMed  Google Scholar 

  83. Ishikawa K, Yamada T, Yoshida Y, et al. Renin-angiotensin system blocker use may be associated with suppression of atrial fibrillation recurrence after pulmonary vein isolation. Pacing Clin Electrophysiol. 2011;34:296–303.

    Article  PubMed  Google Scholar 

  84. Madrid AH, Bueno MG, Rebollo JM, et al. Use of irbesartan to maintain sinus rhythm in patients with long lasting persistent atrial fibrillation: a prospective and randomized study. Circulation. 2002;106:331–6.

    Article  CAS  PubMed  Google Scholar 

  85. Ueng KC, Tsai TP, Yu WC, et al. Use of enalapril to facilitate sinus rhythm maintenance after external cardioversion of long standing persistent atrial fibrillation. Results of a prospective and controlled study. Eur Heart J. 2003;24:2090–8.

    Article  CAS  PubMed  Google Scholar 

  86. Fogari R, Mugellini A, Destro M, et al. Losartan and prevention of atrial fibrillation recurrence in hypertensive patients. J Cardiovasc Pharmacol. 2006;47:46–50.

    Article  CAS  PubMed  Google Scholar 

  87. Yin Y, Dalal D, Liu Z, et al. Prospective randomized study comparing amiodarone vs. amiodarone plus losartan vs. amiodarone plus perindopril for prevention of atrial fibrillation recurrence in patients with lone paroxysmal atrial fibrillation. Eur Heart J. 2006;27:1841–6.

    Article  CAS  PubMed  Google Scholar 

  88. Cui Y, Ma C, Long D, et al. Effect of valsartan on atrial fibrillation recurrence following pulmonary vein isolation in patients. Exp Ther Med. 2015;9:631–5.

    Article  CAS  PubMed  Google Scholar 

  89. Madrid AH, Marín IM, Cervantes CE, et al. Prevention of recurrences in patients with lone atrial fibrillation. The dose-dependent effect of angiotensin II receptor blockers. J Renin-Angiotensin-Aldosterone Syst. 2004;5:114–20.

    Article  CAS  PubMed  Google Scholar 

  90. Huang CY, Yang YH, Lin LY, et al. Renin-angiotensin-aldosterone blockade reduces atrial fibrillation in hypertrophic cardiomyopathy. Heart. 2018;104:1276–83.

    Article  CAS  PubMed  Google Scholar 

  91. Hsieh YC, Hung CY, Li CH, et al. Angiotensin-receptor blocker, angiotensin-converting enzyme inhibitor, and risks of atrial fibrillation: a nationwide cohort study. Medicine (Baltimore). 2016;95:e3721.

    Article  CAS  Google Scholar 

  92. Schneider MP, Hua TA, Böhm M, et al. Prevention of atrial fibrillation by renin-angiotensin system inhibition: a meta-analysis. J Am Coll Cardiol. 2010;55:2299–307.

    Article  PubMed  Google Scholar 

  93. Huang G, Xu JB, Liu JX, et al. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers decrease the incidence of atrial fibrillation: a meta-analysis. Eur J Clin Investig. 2011;41:719–33.

    Article  Google Scholar 

  94. Williams RS, Delemos JA, Dimas V, et al. Effect of spironolactone on patients with atrial fibrillation and structural heart disease. Clin Cardiol. 2011;34:415–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ito Y, Yamasaki H, Naruse Y, et al. Effect of eplerenone on maintenance of sinus rhythm after catheter ablation in patients with long-standing persistent atrial fibrillation. Am J Cardiol. 2013;111:1012–8.

    Article  CAS  PubMed  Google Scholar 

  96. Swedberg K, Zannad F, McMurray JJ, et al. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure) study. J Am Coll Cardiol. 2012;59:1598–603.

    Article  CAS  PubMed  Google Scholar 

  97. Liu T, Korantzopoulos P, Shao Q, et al. Mineralocorticoid receptor antagonists and atrial fibrillation: a meta-analysis. Europace. 2016;18:672–8.

    Article  PubMed  Google Scholar 

  98. Neefs J, van den Berg NW, Limpens J, et al. Aldosterone pathway blockade to prevent atrial fibrillation: a systematic review and meta-analysis. Int J Cardiol. 2017;231:155–61.

    Article  CAS  PubMed  Google Scholar 

  99. Hansson L, Lindholm LH, Niskanen L, et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet. 1999;353:611–6.

    Article  CAS  PubMed  Google Scholar 

  100. Hansson L, Lindholm LH, Ekbom T, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet. 1999;354:1751–6.

    Article  CAS  PubMed  Google Scholar 

  101. Salehian O, Healey J, Stambler B, et al. Impact of ramipril on the incidence of atrial fibrillation: results of the Heart Outcomes Prevention Evaluation study. Am Heart J. 2007;154:448–53.

    Article  CAS  PubMed  Google Scholar 

  102. Schmieder RE, Kjeldsen SE, Julius S, et al. Reduced incidence of new-onset atrial fibrillation with angiotensin II receptor blockade: the VALUE trial. J Hypertens. 2008;26:403–11.

    Article  CAS  PubMed  Google Scholar 

  103. Wachtell K, Lehto M, Gerdts E, et al. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention for End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol. 2005;45:712–9.

    Article  CAS  PubMed  Google Scholar 

  104. Yusuf S, Teo K, Anderson C, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008;372:1174–83.

    Article  CAS  PubMed  Google Scholar 

  105. Zhao D, Wang ZM, Wang LS. Prevention of atrial fibrillation with renin-angiotensin system inhibitors on essential hypertensive patients: a meta-analysis of randomized controlled trials. J Biomed Res. 2015;29:475–85.

    PubMed  PubMed Central  Google Scholar 

  106. Dewland TA, Soliman EZ, Yamal JM, et al. Pharmacologic prevention of incident atrial fibrillation: long-term results from the ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial). Circ Arrhythm Electrophysiol. 2017;10:e005463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Anand K, Mooss AN, Hee TT, et al. Meta-analysis: inhibition of renin-angiotensin system prevents new-onset atrial fibrillation. Am Heart J. 2006;152:217–22.

    Article  CAS  PubMed  Google Scholar 

  108. Goette A, Schon N, Kirchhof P, et al. Angiotensin II-antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial. Circ Arrhythm Electrophysiol. 2012;5:43–51.

    Article  PubMed  Google Scholar 

  109. Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.

    Article  CAS  PubMed  Google Scholar 

  110. Al Chekakie MO, Akar JG, Wang F, et al. The effects of statins and renin-angiotensin system blockers on atrial fibrillation recurrence following antral pulmonary vein isolation. J Cardiovasc Electrophysiol. 2007;18:942–6.

    Article  PubMed  Google Scholar 

  111. Zheng B, Kang J, Tian Y, et al. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers have no beneficial effect on ablation outcome in chronic persistent atrial fibrillation. Acta Cardiol. 2009;64:335–40.

    Article  PubMed  Google Scholar 

  112. Patel D, Mohanty P, Di Biase L, et al. The impact of statins and renin-angiotensin-aldosterone system blockers on pulmonary vein antrum isolation outcomes in post-menopausal females. Europace. 2010;12:322–30.

    Article  PubMed  Google Scholar 

  113. Tveit A, Grundvold I, Olufsen M, et al. Candesartan in the prevention of relapsing atrial fibrillation. Int J Cardiol. 2007;120:85–91.

    Article  PubMed  Google Scholar 

  114. Disertori M, Latini R, Barlera S, et al. Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med. 2009;360:1606–17.

    Article  PubMed  Google Scholar 

  115. Yusuf S, Healey JS, Pogue J, et al. Irbesartan in patients with atrial fibrillation. N Engl J Med. 2011;364:928–38.

    Article  CAS  PubMed  Google Scholar 

  116. Cikes M, Claggett B, Shah AM, et al. Atrial fibrillation in heart failure with preserved ejection fraction: the TOPCAT trial. JACC Heart Fail. 2018;6(8):689–97.

    Article  PubMed  Google Scholar 

  117. Carrel T, Englberger L, Mohacsi P, et al. Low systemic vascular resistance after cardiopulmonary bypass: incidence, etiology, and clinical importance. J Card Surg. 2000;15:347–53.

    Article  CAS  PubMed  Google Scholar 

  118. Arora P, Rajagopalam S, Ranjan R, et al. Preoperative use of angiotensin converting enzyme inhibitors/angiotensin receptor blockers is associated with increased risk for acute kidney injury after cardiovascular surgery. Clin J Am Soc Nephrol. 2008;3:1266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pretorius M, Murray KT, Yu C, et al. Angiotensin-converting enzyme inhibition or mineralocorticoid receptor blockade do not affect prevalence of atrial fibrillation in patients undergoing cardiac surgery. Crit Care Med. 2012;40:2805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. El-Haddad MA, Zalawadiya SK, Awdallah H, et al. Role of irbesartan in prevention of post-coronary artery bypass graft atrial fibrillation. Am J Cardiovasc Drugs. 2011;11:277–84.

    Article  CAS  PubMed  Google Scholar 

  121. Ozaydin M, Dede O, Varol E, et al. Effect of renin-angiotensin aldosteron system blockers on postoperative atrial fibrillation. Int J Cardiol. 2008;127:362–7.

    Article  PubMed  Google Scholar 

  122. Shi Y, Li D, Tardif JC, et al. Enalapril effects on atrial remodeling and atrial fibrillation in experimental congestive heart failure. Cardiovasc Res. 2002;54:456–61.

    Article  CAS  PubMed  Google Scholar 

  123. Vermes E, Tardif JC, Bourassa MG, et al. Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: insight from the Studies Of Left Ventricular Dysfunction (SOLVD) trials. Circulation. 2003;107:2926–31.

    Article  PubMed  Google Scholar 

  124. Singh JP, Kulik A, Levin R, et al. Renin-angiotensin-system modulators and the incidence of atrial fibrillation following hospitalization for coronary artery disease. Europace. 2012;14:1287–93.

    Article  PubMed  Google Scholar 

  125. Belluzzi F, Sernesi L, Preti P, et al. Prevention of recurrent lone atrial fibrillation by the angiotensin-II converting enzyme inhibitor ramipril in normotensive patients. J Am Coll Cardiol. 2009;53:24–9.

    Article  CAS  PubMed  Google Scholar 

  126. Ducharme A, Swedberg K, Pfeffer MA, et al. Prevention of atrial fibrillation in patients with symptomatic chronic heart failure by candesartan in the Candesartan in Heart failure: assessment of Reduction in Mortality and morbidity (CHARM) program. Am Heart J. 2006;152:86–92.

    Article  PubMed  Google Scholar 

  127. Pizzetti F, Turazza FM, Franzosi MG, et al. Incidence and prognostic significance of atrial fibrillation in acute myocardial infarction: the GISSI 3 data. Heart. 2001;86:527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Salchian O, Healey J, Stambler B, et al. Impact of ramipril on the incidence of atrial fibrillation: results of the Heart Outcomes Prevention Evaluation study. Am Heart J. 2007;154:448–53.

    Article  CAS  Google Scholar 

  129. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  CAS  PubMed  Google Scholar 

  130. Aksnes TA, Flaa A, Strand A, et al. Prevention of new-onset atrial fibrillation and its predictors with angiotensin II-receptor blockers in the treatment of hypertension and heart failure. J Hypertens. 2007;25:15–23.

    Article  CAS  PubMed  Google Scholar 

  131. Savelieva I, Kakouros N, Kourliouros A, et al. Upstream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention. Europace. 2011;13:308–28.

    Article  PubMed  Google Scholar 

  132. Yamashita T, Inoue H, Okumura K, et al. Randomized trial of angiotensin II-receptor blocker vs. dihydropiridine calcium channel blocker in the treatment of paroxysmal atrial fibrillation with hypertension (J-RHYTHM II study). Europace. 2011;13:473–9.

    Article  PubMed  Google Scholar 

  133. Dabrowski R, Borowiec A, Smolis-Bak E, et al. Effect of combined spironolactone-β-blocker ± enalapril treatment on occurrence of symptomatic atrial fibrillation episodes in patients with a history of paroxysmal atrial fibrillation (SPIR-AF study). Am J Cardiol. 2010;106:1609–14.

    Article  CAS  PubMed  Google Scholar 

  134. Han M, Zhang Y, Sun S, et al. Renin-angiotensin system inhibitors prevent the recurrence of atrial fibrillation: a meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol. 2013;62:405–15.

    Article  CAS  PubMed  Google Scholar 

  135. Strauss MH, Hall AS. Angiotensin receptor blockers may increase risk of myocardial infarction: unraveling the ARB-MI paradox. Circulation. 2006;114:838–54.

    Article  PubMed  Google Scholar 

  136. Chrysant SG, Chrysant GS. The pleiotropic effects of angiotensin receptor blockers. J Clin Hypertens (Greenwich). 2006;8:261–8.

    Article  CAS  Google Scholar 

  137. Siragy HM, Carey RM. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest. 1997;100:264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pitt B. “Escape” of aldosterone production in patients with left ventricular dysfunction treated with an angiotensin converting enzyme inhibitor: implications for therapy. Cardiovasc Drugs Ther. 1995;9:145–9.

    Article  CAS  PubMed  Google Scholar 

  139. Mentz RJ, Bakris GL, Waeber B, et al. The past, present and future of renin-angiotensin aldosterone system inhibition. Int J Cardiol. 2013;167:1677–87.

    Article  PubMed  Google Scholar 

  140. Satoh A, Niwano S, Niwano H, et al. Aliskiren suppresses atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessel. 2017;32:90–100.

    Article  Google Scholar 

  141. Ellermann C, Mittelstedt A, Güner F, et al. Acute proarrhythmic effect of aliskiren in an experimental model of atrial fibrillation. Clin Res Cardiol. 2018;107. (Abstract).

    Google Scholar 

  142. Takei Y, Ichikawa M, Kijima Y. Oral direct renin inhibitor aliskiren reduces in vivo oxidative stress and serum matrix metalloproteinase-2 levels in patients with permanent atrial fibrillation. J Arrhythm. 2015;31:76–7.

    Article  PubMed  Google Scholar 

  143. Der Sarkissian S, Huentelman MJ, Stewart J, et al. ACE2: a novel therapeutic target for cardiovascular diseases. Prog Biophys Mol Biol. 2006;91:163–98.

    Article  CAS  Google Scholar 

  144. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2893–962.

    Article  PubMed  Google Scholar 

  145. Savelieva I, Kourliouros A, Camm J. Primary and secondary prevention of atrial fibrillation with statins and polyunsaturated fatty acids: review of evidence and clinical relevance. Naunyn Schmiedeberg's Arch Pharmacol. 2010;381:1–13.

    Google Scholar 

  146. Riesen WF, Engler H, Risch M, et al. Short-term effects of atorvastatin on C-reactive protein. Eur Heart J. 2002;23:794–9.

    Article  CAS  PubMed  Google Scholar 

  147. Lefer DJ. Statins as potent antiinflammatory drugs. Circulation. 2002;106:2041–2.

    Article  PubMed  Google Scholar 

  148. Fauchier L, Pierre B, de Labriolle A, et al. Antiarrhythmic effect of statin therapy and atrial fibrillation a meta-analysis of randomized controlled trials. J Am Coll Cardiol. 2008;51:828–35.

    Article  CAS  PubMed  Google Scholar 

  149. Imazio M. Primary prevention of atrial fibrillation where are we in 2012? J Atr Fibrillation. 2012;5:608.

    PubMed  PubMed Central  Google Scholar 

  150. Maggioni AP, Fabbri G, Lucci D, et al. Effect of rosuvastatin on atrial fibrillation: ancillary results of the GISSI-HF trial. Eur Heart J. 2009;30:2327–36.

    Article  CAS  PubMed  Google Scholar 

  151. Shiroshita-Takeshita A, Brundel BJ, et al. Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc Res. 2007;74:75–84.

    Article  CAS  PubMed  Google Scholar 

  152. Porter KE, O’Regan DJ, Balmforth AJ, et al. Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res. 2004;61:745–55.

    Article  CAS  PubMed  Google Scholar 

  153. Negi S, Shukrullah I, Veledar E, et al. Statin therapy for the prevention of atrial fibrillation trial (SToP AF trial). J Cardiovasc Electrophysiol. 2011;22:414–9.

    Article  PubMed  Google Scholar 

  154. Kumagai K, Nakashima H, Saku K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc Res. 2004;62:105–11.

    Article  CAS  PubMed  Google Scholar 

  155. Shiroshita-Takeshita A, Schram G, Lavoie J, et al. The effect of simvastatin and antioxidant vitamins on atrial fibrillation—promotion by atrial tachycardia remodeling in dogs. Circulation. 2004;110:2313–9.

    Article  CAS  PubMed  Google Scholar 

  156. Hanna IR, Heeke B, Bush H, et al. Lipid-lowering drug use is associated with reduced prevalence of atrial fibrillation in patients with left ventricular systolic dysfunction. Heart Rhythm. 2006;3:881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Dickinson MG, Hellkamp AS, Ip JH, et al. Statin therapy was associated with reduced atrial fibrillation and flutter in heart failure patients in SCD-HEFT. Heart Rhythm. 2006;3:S49. (Abstract).

    Article  Google Scholar 

  158. Liu T, Li L, Korantzopoulos P, et al. Statin use and development of atrial fibrillation: a systematic review and meta-analysis of randomized clinical trials and observational studies. Int J Cardiol. 2008;126:160–70.

    Article  PubMed  Google Scholar 

  159. Bang CN, Greve AM, Abdulla J, et al. The preventive effect of statin therapy on new-onset and recurrent atrial fibrillation in patients not undergoing invasive cardiac interventions: a systematic review and meta-analysis. Int J Cardiol. 2013;167:624–30.

    Article  PubMed  Google Scholar 

  160. Fauchier L, Clementy N, Babuty D. Statin therapy and atrial fibrillation: systematic review and updated meta-analysis of published randomized controlled trials. Curr Opin Cardiol. 2013;28:7–18.

    Article  PubMed  Google Scholar 

  161. Dernellis J, Panaretou M. Effect of C-reactive protein reduction on paroxysmal atrial fibrillation. Am Heart J. 2005;150:1064.

    Article  PubMed  CAS  Google Scholar 

  162. Song YB, On YK, Kim JH, et al. The effects of atorvastatin on the occurrence of postoperative atrial fibrillation after off-pump coronary artery bypass grafting surgery. Am Heart J. 2008;156:373.

    Article  CAS  PubMed  Google Scholar 

  163. Patti G, Chello M, Candura D, et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation. 2006;114:1455–61.

    Article  CAS  PubMed  Google Scholar 

  164. Ji Q, Mei Y, Wang X, et al. Effect of preoperative atorvastatin therapy on atrial fibrillation following off-pump coronary artery bypass grafting. Circ J. 2009;73:2244–9.

    Article  CAS  PubMed  Google Scholar 

  165. Loffredo L, Angelico F, Perri L, et al. Upstream therapy with statin and recurrence of atrial fibrillation after electrical cardioversion. Review of the literature and meta-analysis. BMC Cardiovasc Disord. 2012;12:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Haywood LJ, Ford CE, Crow RS, ALLHAT Collaborative Research Group, et al. Atrial fibrillation at baseline and during follow-up in ALLHAT (Antihypertensive and lipid-lowering treatment to prevent heart attack trial). J Am Coll Cardiol. 2009;54:2023–31.

    Article  CAS  PubMed  Google Scholar 

  167. Thacker EL, Jensen PN, Psaty BM, et al. Use of statins and antihypertensive medications in relation to risk of long-standing persistent atrial fibrillation. Ann Pharmacother. 2015;49:378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Neuman RB, Bloom HL, Shukrullah I, et al. Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem. 2007;53:1652–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Reilly SN, Jayaram R, Nahar K, et al. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation. 2011;124:1107–17.

    Article  CAS  PubMed  Google Scholar 

  170. Cangemi R, Celestini A, Calvieri C, et al. Different behaviour of NOX2 activation in patients with paroxysmal/persistent or permanent atrial fibrillation. Heart. 2012;98:1063–6.

    Article  CAS  PubMed  Google Scholar 

  171. Antoniades C, Demosthenous M, Reilly S, et al. Myocardial redox state predicts in-hospital clinical outcome after cardiac surgery effects of short-term pre-operative statin treatment. J Am Coll Cardiol. 2012;59:60–70.

    Article  CAS  PubMed  Google Scholar 

  172. Fang WT, Li HJ, Zhang H, et al. The role of statin therapy in the prevention of atrial fibrillation: a meta-analysis of randomized controlled trials. Br J Clin Pharmacol. 2012;74:744–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rahimi K, Emberson J, McGale P, et al. Effect of statins on atrial fibrillation: collaborative meta-analysis of published and unpublished evidence from randomised controlled trials. BMJ. 2011;342:d1250.

    Article  PubMed  CAS  Google Scholar 

  174. Komatsu T, Tachibana H, Sato Y, et al. Long-term efficacy of upstream therapy with lipophilic or hydrophilic statins on antiarrhythmic drugs in patients with paroxysmal atrial fibrillation: comparison between atorvastatin and pravastatin. Int Heart J. 2011;52:359–65.

    Article  CAS  PubMed  Google Scholar 

  175. Hognestad A, Aukrust P, Wergeland R, et al. Effects of conventional and aggressive statin treatment on markers of endothelial function and inflammation. Clin Cardiol. 2004;27:199–203.

    Article  PubMed  Google Scholar 

  176. Mason RP. Molecular basis of differences among statins and a comparison with antioxidant vitamins. Am J Cardiol. 2006;98:34P–41P.

    Article  CAS  PubMed  Google Scholar 

  177. Turner NA, Midgley L, O'Regan DJ, et al. Comparison of the efficacies of five different statins on inhibition of human saphenous vein smooth muscle cell proliferation and invasion. J Cardiovasc Pharmacol. 2007;50:458–61.

    Article  CAS  PubMed  Google Scholar 

  178. Naji F, Suran D, Kanic V, et al. Comparison of atorvastatin and simvastatin in prevention of atrial fibrillation after successful cardioversion. Int Heart J. 2009;50:153–60.

    Article  CAS  PubMed  Google Scholar 

  179. Hung CY, Hsieh YC, Wang KY, et al. Efficacy of different statins for primary prevention of atrial fibrillation in male and female patients: a nationwide population-based cohort study. Int J Cardiol. 2013;168:4367–9.

    Article  PubMed  Google Scholar 

  180. Savelieva I, Camm J. Statins and polyunsaturated fatty acids for treatment of atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2008;5:30–41.

    Article  CAS  PubMed  Google Scholar 

  181. Sakabe M, Shiroshita-Takeshita A, Maguy A, et al. Omega-3 polyunsaturated fatty acids prevent atrial fibrillation associated with heart failure but not atrial tachycardia remodeling. Circulation. 2007;116:2101–9.

    Article  CAS  PubMed  Google Scholar 

  182. Yashodhara BM, Umakanth S, Pappachan JM, et al. Omega-3 fatty acids: a comprehensive review of their role in health and disease. Postgrad Med J. 2009;85:84–90.

    Article  CAS  PubMed  Google Scholar 

  183. Sarrazin JF, Comeau G, Daleau P, et al. Reduced incidence of vagally induced atrial fibrillation and expression levels of connexins by n-3 polyunsaturated fatty acids in dogs. J Am Coll Cardiol. 2007;50:1505–12.

    Article  CAS  PubMed  Google Scholar 

  184. Li GR, Sun HY, Zhang XH, et al. Omega-3 polyunsaturated fatty acids inhibit transient outward and ultra-rapid delayed rectifier K+currents and Na+current in human atrial myocytes. Cardiovasc Res. 2009;81:286–93.

    Article  CAS  PubMed  Google Scholar 

  185. Boland LM, Drzewiecki MM. Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell Biochem Biophys. 2008;52:59–84.

    Article  CAS  PubMed  Google Scholar 

  186. Dhein S, Michaelis B, Mohr FW. Antiarrhythmic and electrophysiological effects of long-chain omega-3 polyunsaturated fatty acids. Naunyn Schmiedeberg's Arch Pharmacol. 2005;371:202–11.

    Article  CAS  Google Scholar 

  187. Xiao Y-F, Ke Q, Chen Y, et al. Inhibitory effect of n-3 fish oil fatty acids on cardiac Na+/Ca2+ exchange currents in HEK293t cells. Biochem Biophys Res Commun. 2004;321:116–23.

    Article  CAS  PubMed  Google Scholar 

  188. Naccarelli GV, Wolbrette DL, Samii S, et al. New anti-arrhythmic treatment of atrial fibrillation. Expert Rev Cardiovasc Ther. 2007;5:707–14.

    Article  CAS  PubMed  Google Scholar 

  189. Chen H, Li D, Roberts GJ, et al. Eicosapentanoic acid inhibits hypoxia-reoxygenation-induced injury by attenuating upregulation of MMP-1 in adult rat myocytes. Cardiovasc Res. 2003;59:7–13.

    Article  CAS  PubMed  Google Scholar 

  190. Engelbrecht AM, Engelbrecht P, Genade S, et al. Long-chain polyunsaturated fatty acids protect the heart against ischemia/reperfusion-induced injury via a MAPK dependent pathway. J Mol Cell Cardiol. 2005;39:940–54.

    Article  CAS  PubMed  Google Scholar 

  191. Kourliouros A, Savelieva I, Kiotsekoglou A, et al. Current concepts in the pathogenesis of atrial fibrillation. Am Heart J. 2009;157:243–52.

    Article  PubMed  Google Scholar 

  192. Ninio DM, Murphy KJ, Howe PR, et al. Dietary fish oil protects against stretch-induced vulnerability to atrial fibrillation in a rabbit model. J Cardiovasc Electrophysiol. 2005;16:1189–94.

    Article  PubMed  Google Scholar 

  193. Savelieva I, Camm AJ. Polyunsaturated fatty acids for prevention of atrial fibrillation: a ‘fishy’ story. Europace. 2011;13:149–52.

    Article  PubMed  Google Scholar 

  194. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58:2047–67.

    Article  CAS  PubMed  Google Scholar 

  195. Kumar S, Sutherland F, Rosso R, et al. Effects of chronic omega-3 polyunsaturated fatty acid supplementation on human atrial electrophysiology. Heart Rhythm. 2011;8:562–8.

    Article  PubMed  Google Scholar 

  196. Virtanen JK, Mursu J, Voutilainen S, et al. Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation. 2009;120:2315–21.

    Article  CAS  PubMed  Google Scholar 

  197. Kirkegaard E, Svensson M, Strandhave C, et al. Marine n-3 fatty acids, atrial fibrillation and QT interval in haemodialysis patients. Br J Nutr. 2012;107:903–9.

    Article  CAS  PubMed  Google Scholar 

  198. Darghosian L, Free M, Li J, Gebretsadik T, et al. Effect of omega-three polyunsaturated fatty acids on inflammation, oxidative stress, and recurrence of atrial fibrillation. Am J Cardiol. 2015;115:196–201.

    Article  CAS  PubMed  Google Scholar 

  199. Nigam A, Talajic M, Roy D, et al. Fish oil for the reduction of atrial fibrillation recurrence, inflammation, and oxidative stress. J Am Coll Cardiol. 2014;64:1441–8.

    Article  CAS  PubMed  Google Scholar 

  200. Zhang Z, Zhang C, Wang H, et al. n-3 polyunsaturated fatty acids prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Int J Cardiol. 2011;153:14–20.

    Article  PubMed  Google Scholar 

  201. Mayyas F, Sakurai S, Ram R, et al. Dietary ω3 fatty acids modulate the substrate for post-operative atrial fibrillation in a canine cardiac surgery model. Cardiovasc Res. 2011;89:852–61.

    Article  CAS  PubMed  Google Scholar 

  202. Macchia A, Monte S, Pellegrini F, et al. Omega-3 fatty acid supplementation reduces one-year risk of atrial fibrillation in patients hospitalized with myocardial infarction. Eur J Clin Pharmacol. 2008;64:627–34.

    Article  CAS  PubMed  Google Scholar 

  203. Mozaffarian D, Psaty BM, Rimm EB, et al. Fish intake and risk of incident atrial fibrillation. Circulation. 2004;110:368–73.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Biscione F, Totteri A, De Vita A, et al. Effetti degli acidi grassi omega-3 nella prevenzione delle aritmie atriali. Ital Heart J Suppl. 2005;6:53–9.

    PubMed  Google Scholar 

  205. Patel D, Shaheen M, Venkatraman P, et al. Omega-3 polyunsaturated fatty acid supplementation reduced atrial fibrillation recurrence after pulmonary vein antrum isolation. Indian Pacing Electrophysiol J. 2009;9:292–8.

    PubMed  PubMed Central  Google Scholar 

  206. Nodari S, Triggiani M, Foresti A, et al. Use of n-3 polyunsaturated fatty acids to maintain sinus rhythm after conversion from persistent atrial fibrillation: a prospective randomized study. J Am Coll Cardiol. 2010;55:10A. (Abstract).

    Google Scholar 

  207. Kumar S, Sutherland F, Morton JB, et al. Long-term omega-3 polyunsaturated fatty acid supplementation reduces the recurrence of persistent atrial fibrillation after electrical cardioversion. Heart Rhythm. 2012;9:483–91.

    Article  PubMed  Google Scholar 

  208. Brouwer IA, Heeringa J, Geleijnse JM, et al. Intake of very long-chain n-3 fatty acids from fish and incidence of atrial fibrillation. The Rotterdam study. Am Heart J. 2006;151:857–62.

    Article  CAS  PubMed  Google Scholar 

  209. Frost L, Vestergaard P. N-3 fatty acids consumed from fish and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health study. Am J Clin Nutr. 2005;81:50–4.

    Article  CAS  PubMed  Google Scholar 

  210. Bianconi L, Calò L, Mennuni S, et al. N-3 poly-unsaturated fatty acids for the prevention of atrial fibrillation recurrence after electrical cardioversion of chronic persistent atrial fibrillation. A randomized, double-blind, mlticentre study. Europace. 2011;13:174–81.

    Article  PubMed  Google Scholar 

  211. Macchia A, Varini S, Grancelli H, et al. The rationale and design of the FORomegaARD Trial: a randomized, double-blind, placebo-controlled, independent study to test the efficacy of n-3 PUFA for the maintenance of normal sinus rhythm in patients with previous atrial fibrillation. Am Heart J. 2009;157:423–7.

    Article  CAS  PubMed  Google Scholar 

  212. Jiang Y, Tan HC, Tam WWS, et al. A meta-analysis on Omega-3 supplements in preventing recurrence of atrial fibrillation. Oncotarget. 2017;9:6586–94.

    PubMed  PubMed Central  Google Scholar 

  213. Mariani J, Doval HC, Nul D, et al. N-3 polyunsaturated fatty acids to prevent atrial fibrillation: updated systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2013;2:e005033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. He Z, Yang L, Tian J, et al. Efficacy and safety of omega-3 fatty acids for the prevention of atrial fibrillation: a meta-analysis. Can J Cardiol. 2013;29:196–203.

    Article  PubMed  Google Scholar 

  215. Cao H, Wang X, Huang H, et al. Omega-3 fatty acids in the prevention of atrial fibrillation recurrences after cardioversion: a meta-analysis of randomized controlled trials. Intern Med. 2012;51:2503–8.

    Article  CAS  PubMed  Google Scholar 

  216. Liu T, Korantzopoulos P, Shehata M, et al. Prevention of atrial fibrillation with omega-3 fatty acids: a meta-analysis of randomised clinical trials. Heart. 2011;97:1034–40.

    Article  CAS  PubMed  Google Scholar 

  217. Khawaja O, Gaziano JM, Djoussé L. A meta-analysis of omega-3 fatty acids and incidence of atrial fibrillation. J Am Coll Nutr. 2012;31:4–13.

    Article  CAS  PubMed  Google Scholar 

  218. Berry JD, Prineas RJ, van Horn L, et al. Dietary fish intake and incident atrial fibrillation (from the Women's Health Initiative). Am J Cardiol. 2010;105:844–8.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Aleksova A, Masson S, Maggioni AP, et al. n-3 polyunsaturated fatty acids and atrial fibrillation in patients with chronic heart failure: the GISSI-HF trial. Eur J Heart Fail. 2013;15:1289–95.

    Article  CAS  PubMed  Google Scholar 

  220. Heidt MC, Vician M, Stracke SK, et al. Beneficial effects of intravenously administered N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a prospective randomized study. Thorac Cardiovasc Surg. 2009;57:276–80.

    Article  CAS  PubMed  Google Scholar 

  221. Mariscalco G, Sarzi Braga S, Banach M, et al. Preoperative n-3 polyunsaturated fatty acids are associated with a decrease in the incidence of early atrial fibrillation following cardiac surgery. Angiology. 2010;61:643–50.

    Article  CAS  PubMed  Google Scholar 

  222. Calò L, Bianconi L, Colivicchi F, et al. N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery. A randomized, controlled trial. J Am Coll Cardiol. 2005;45:1723–8.

    Article  PubMed  CAS  Google Scholar 

  223. Sorice M, Tritto FP, Sordelli C, et al. N-3 polyunsaturated fatty acids reduces post-operative atrial fibrillation incidence in patients undergoing “on-pump” coronary artery bypass graft surgery. Monaldi Arch Chest Dis. 2011;76:93–8.

    PubMed  Google Scholar 

  224. Saravanan P, Bridgewater B, West AL, et al. Omega-3 fatty acid supplementation does not reduce risk of atrial fibrillation after coronary artery bypass surgery: a randomized, double blind, placebo controlled clinical trial. Circ Arrhythm Electrophysiol. 2010;3:46–53.

    Article  CAS  PubMed  Google Scholar 

  225. Mozaffarian D, Marchioli R, Macchia A, et al. Fish oil and postoperative atrial fibrillation: the Omega-3 Fatty Acids for Prevention of Post-operative Atrial Fibrillation (OPERA) randomized trial. JAMA. 2012;308:2001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Heidarsdottir R, Arnar DO, Skuladottir GV, et al. Does treatment with n-3 polyunsaturated fatty acids prevent atrial fibrillation after open heart surgery? Europace. 2010;12:356–63.

    Article  PubMed  Google Scholar 

  227. Farquharson AL, Metcalf RG, Sanders P, et al. Effect of dietary fish oil on atrial fibrillation after cardiac surgery. Am J Cardiol. 2011;108:851–6.

    Article  CAS  PubMed  Google Scholar 

  228. Sandesara CM, Chung MK, Van Wagoner DR, et al. A randomized, placebo-controlled trial of omega-3 fatty acids for inhibition of supraventricular arrhythmias after cardiac surgery: the FISH trial. J Am Heart Assoc. 2012;1:e000547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Armaganijan L, Lopes RD, Healey JS, et al. Do omega-3 fatty acids prevent atrial fibrillation after open heart surgery? A meta-analysis of randomized controlled trials. Clinics (Sao Paulo). 2011;66:1923–8.

    Google Scholar 

  230. Benedetto U, Angeloni E, Melina G, et al. n-3 Polyunsaturated fatty acids for the prevention of postoperative atrial fibrillation: a meta-analysis of randomized controlled trials. J Cardiovasc Med (Hagerstown). 2013;14:104–9.

    Article  CAS  Google Scholar 

  231. Calò L, Martino A, Sciarra L, et al. Upstream effect for atrial fibrillation: still a dilemma? Pacing Clin Electrophysiol. 2011;34:111–28.

    Article  PubMed  Google Scholar 

  232. Pipingas A, Cockerell R, Grima N, et al. Randomized controlled trial examining the effects of fish oil and multivitamin supplementation on the incorporation of n-3 and n-6 fatty acids into red blood cells. Nutrients. 2014;6:1956–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    Article  CAS  PubMed  Google Scholar 

  234. Owen AJ, Peter-Przyborowska BA, Hoy AJ, et al. Dietary fish oil dose- and time-response effects on cardiac phospholipid fatty acid composition. Lipids. 2004;39:955–61.

    Article  CAS  PubMed  Google Scholar 

  235. Sullivan RM, Olshansky B. Using omega-3 fatty acids to treat persistent atrial fibrillation: time to fish or cut bait? Heart Rhythm. 2012;9:492–3.

    Article  PubMed  Google Scholar 

  236. Den Ruijter HM, Berecki G, Opthof T, et al. Pro- and antiarrhythmic properties of a diet rich in fish oil. Cardiovasc Res. 2007;73:316–25.

    Article  CAS  Google Scholar 

  237. Rodrigo R, Korantzopoulos P, Cereceda M, et al. A randomized controlled trial to prevent post-operative atrial fibrillation by antioxidant reinforcement. J Am Coll Cardiol. 2013;62:1457–65.

    Article  CAS  PubMed  Google Scholar 

  238. Kumar S, Sutherland F, Rosso R, et al. Chronic fish oil ingestion in humans prevents atrial electrical remodeling and reduces susceptibility to atrial fibrillation. Heart Rhythm. 2010;7:S108. (Abstract).

    Article  Google Scholar 

  239. Metcalf RG, Skuladottir GV, Indridason OS, et al. U-shaped relationship between tissue docosahexaenoic acid and atrial fibrillation following cardiac surgery. Eur J Clin Nutr. 2014;68:114–8.

    Article  CAS  PubMed  Google Scholar 

  240. Aizer A, Gaziano JM, Manson JE, et al. Relationship between fish consumption and the development of atrial fibrillation in men. Heart Rhythm. 2006;3:S5. (Abstract).

    Article  Google Scholar 

  241. Rix TA, Joensen AM, Riahi S, et al. A U-shaped association between consumption of marine n-3 fatty acids and development of atrial fibrillation/atrial flutter-a Danish cohort study. Europace. 2014;16:1554–61.

    Article  PubMed  Google Scholar 

  242. Goldstein RN, Ryu K, Khrestian C, et al. Prednisone prevents inducible atrial flutter in the canine sterile pericarditis model. J Cardiovasc Electrophysiol. 2008;19:74–81.

    PubMed  Google Scholar 

  243. Shiroshita-Takeshita A, Brundel BJ, Lavoie J, et al. Prednisone prevents atrial fibrillation promotion by atrial tachycardia remodeling in dogs. Cardiovasc Res. 2006;69:865–75.

    Article  CAS  PubMed  Google Scholar 

  244. Bourbon A, Vionnet M, Leprince P, et al. The effect of methylprednisolone treatment on the cardiopulmonary bypass-induced systemic inflammatory response. Eur J Cardiothorac Surg. 2004;26:932–8.

    Article  CAS  PubMed  Google Scholar 

  245. Kilger E, Weis F, Briegel J, et al. Stress doses of hydrocortisone reduce severe systemic inflammatory response syndrome and improve early outcome in a risk group of patients after cardiac surgery. Crit Care Med. 2003;31:1068–74.

    Article  CAS  PubMed  Google Scholar 

  246. Liakopoulos OJ, Schmitto JJD, Kazmaier S, et al. Cardiopulmonary and systemic effects of methylprednisolone in patients undergoing cardiac surgery. Ann Thorac Surg. 2007;84:110–8.

    Article  PubMed  Google Scholar 

  247. Won H, Kim JY, Shim J, et al. Effect of a single bolus injection of low-dose hydrocortisone for prevention of atrial fibrillation recurrence after radiofrequency catheter ablation. Circ J. 2013;77:53–9.

    Article  CAS  PubMed  Google Scholar 

  248. Andrade JG, Khairy P, Verma A, et al. Early recurrence of atrial tachyarrhythmias following radiofrequency catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol. 2012;35:106–16.

    Article  PubMed  Google Scholar 

  249. Tse G, Yeo JM. Conduction abnormalities and ventricular arrhythmogenesis: the roles of sodium channels and gap junctions. Int J Cardiol Heart Vasc. 2015;9:75–82.

    PubMed  PubMed Central  Google Scholar 

  250. Farman N, Rafestin-Oblin ME. Multiple aspects of mineralocorticoid selectivity. Am J Physiol Renal Physiol. 2001;280:F181–92.

    Article  CAS  PubMed  Google Scholar 

  251. Nguyen Dinh Cat A, Griol-Charhbili V, Loufrani L, et al. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 2010;24:2454–63.

    Article  PubMed  CAS  Google Scholar 

  252. Gravez B, Tarjus A, Jaisser F. Mineralocorticoid receptor and cardiac arrhythmia. Clin Exp Pharmacol Physiol. 2013;40:910–5.

    Article  CAS  PubMed  Google Scholar 

  253. Ishii Y, Schuessler RB, Gaynor SL, et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation. 2005;111:2881–8.

    Article  CAS  PubMed  Google Scholar 

  254. Rubens FD, Nathan H, Labow R, et al. Effects of methylprednisolone and a biocompatible copolymer circuit on blood activation during cardiopulmonary bypass. Ann Thorac Surg. 2005;79:655–65.

    Article  PubMed  Google Scholar 

  255. Prasongsukarn K, Abel JG, Jamieson WR, et al. The effects of steroids on the occurrence of postoperative atrial fibrillation after coronary artery bypass grafting surgery: a prospective randomized trial. J Thorac Cardiovasc Surg. 2005;130:93–8.

    Article  CAS  PubMed  Google Scholar 

  256. Halonen J, Halonen P, Järvinen O, et al. Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. JAMA. 2007;297:1562–7.

    Article  CAS  PubMed  Google Scholar 

  257. Abbaszadeh M, Khan ZH, Mehrani F, et al. Perioperative intravenous corticosteroids reduce incidence of atrial fibrillation following cardiac surgery: a randomized study. Rev Bras Cir Cardiovasc. 2012;27:18–23.

    Article  PubMed  Google Scholar 

  258. Ho KM, Tan JA. Benefits and risks of corticosteroid prophylaxis in adult cardiac surgery: a dose-response meta-analysis. Circulation. 2009;119:1853–66.

    Article  CAS  PubMed  Google Scholar 

  259. Marik PE, Fromm R. The efficacy and dosage effect of corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a systematic review. J Crit Care. 2009;24:458–63.

    Article  CAS  PubMed  Google Scholar 

  260. Whitlock RP, Chan S, Devereaux PJ, et al. Clinical benefit of steroid use in patients undergoing cardiopulmonary bypass: a meta-analysis of randomized trials. Eur Heart J. 2008;29:2592–600.

    Article  PubMed  Google Scholar 

  261. Baker WL, White CM, Kluger J, et al. Effect of perioperative corticosteroid use on the incidence of postcardiothoracic surgery atrial fibrillation and length of stay. Heart Rhythm. 2007;4:461–8.

    Article  PubMed  Google Scholar 

  262. Liu C, Wang J, Yiu D, et al. The efficacy of glucocorticoids for the prevention of atrial fibrillation, or length of intensive care unite or hospital stay after cardiac surgery: a meta-analysis. Cardiovasc Ther. 2014;32:89–96.

    Article  CAS  PubMed  Google Scholar 

  263. Dernellis J, Panaretou M. Relationship between C-reactive protein concentrations during glucocorticoid therapy and recurrent atrial fibrillation. Eur Heart J. 2004;25:1100–7.

    Article  CAS  PubMed  Google Scholar 

  264. Koyama T, Tada H, Sekiguchi Y, et al. Prevention of atrial fibrillation recurrence with corticosteroids after radiofrequency catheter ablation: a randomized controlled trial. J Am Coll Cardiol. 2010;56:1463–72.

    Article  PubMed  Google Scholar 

  265. Lei M, Gong M, Bazoukis G, et al. Steroids prevent early recurrence of atrial fibrillation following catheter ablation: a systematic review and meta-analysis. Biosci Rep. 2018;38:BSR20180462.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Jaiswal S, Liu XB, Wei QC, et al. Effect of corticosteroids on atrial fibrillation after catheter ablation: a meta-analysis. J Zhejiang Univ Sci B. 2018;19:57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Yared JP, Bakri MH, Erzurum SC, et al. Effect of dexamethasone on atrial fibrillation after cardiac surgery: prospective, randomized, double-blind, placebo-controlled trial. J Cardiothorac Vasc Anesth. 2007;21:68–75.

    Article  CAS  PubMed  Google Scholar 

  268. Halvorsen P, Raeder J, White PF, et al. The effect of dexamethasone on side effects after coronary revascularization procedures. Anesth Analg. 2003;96:1578–83.

    Article  CAS  PubMed  Google Scholar 

  269. van Osch D, Dieleman JM, van Dijk D, et al. Dexamethasone for the prevention of postoperative atrial fibrillation. Int J Cardiol. 2015;182:431–7.

    Article  PubMed  Google Scholar 

  270. Andrade JG, Khairy P, Nattel S, et al. Corticosteroid use during pulmonary vein isolation is associated with a higher prevalence of dormant pulmonary vein conduction. Heart Rhythm. 2013;10:1569–75.

    Article  PubMed  Google Scholar 

  271. Kim DR, Won H, Uhm JS, et al. Comparison of two different doses of single bolus steroid injection to prevent atrial fibrillation recurrence after radiofrequency catheter ablation. Yonsei Med J. 2015;56:324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Iskandar S, Reddy M, Afzal MR, et al. Use of oral steroid and its effects on atrial fibrillation recurrence and inflammatory cytokines post ablation - the steroid AF study. J Atr Fibrillation. 2017;9:1604.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Kim YR, Nam GB, Han S, et al. Effect of short-term steroid therapy on early recurrence during the blanking period after catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2015;8:1366–72.

    Article  PubMed  Google Scholar 

  274. Christiansen CF, Christiansen S, Mehnert F, et al. Glucocorticoi use and risk of atrial fibrillation or flutter: a population-based, case-control study. Arch Intern Med. 2009;169:1677–83.

    Article  PubMed  Google Scholar 

  275. Huerta C, Lanes SF, García Rodríguez LA. Respiratory medications and the risk of cardiac arrhythmias. Epidemiology. 2005;16:360–6.

    Article  PubMed  Google Scholar 

  276. Moretti R, Torre P, Antonello RM, et al. Recurrent atrial fibrillation associated with pulse administration of high doses of methylprednysolone: a possible prophylactic treatment. Eur J Neurol. 2000;7:130.

    Article  CAS  PubMed  Google Scholar 

  277. Van Der Hooft CS, Heeringa J, Brusselle GG, et al. Corticosteroids and the risk of atrial fibrillation. Arch Intern Med. 2006;166:1016–20.

    Article  PubMed  Google Scholar 

  278. Jahangiri M, Camm AJ. Do corticosteroids prevent atrial fibrillation after cardiac surgery? Nat Clin Pract Cardiovasc Med. 2007;4:592–3.

    Google Scholar 

  279. Kumari R, Uppal SS. First report of supraventricular tachycardia after intravenous pulse methylprednisolone therapy, with a brief review of the literature. Rheumatol Int. 2005;26:70–3.

    Google Scholar 

  280. Ueda N, Yoshikawa T, Chihara M, et al. Atrial fibrillation following methylprednisolone pulse therapy. Pediatr Nephrol. 1988;2:29–31.

    Article  CAS  PubMed  Google Scholar 

  281. Aslam AK, Vasavada BC, Sacchi TJ, et al. Atrial fibrillation associated with systemic lupus erythematosus and use of methylprednisolone. Am J Ther. 2001;8:303–5.

    Article  CAS  PubMed  Google Scholar 

  282. McLuckie AE, Savage RW. Atrial fibrillation following pulse methylprednisolone therapy in an adult. Chest. 1993;104:622–3.

    Article  CAS  PubMed  Google Scholar 

  283. Chikanza C, Fernandes L. Arrhythmia after pulse methylprednisolone therapy. Br J Rheumatol. 1991;30:392–3.

    Article  CAS  PubMed  Google Scholar 

  284. Fujimoto S, Kondoh H, Yamamoto Y, et al. Holter electrocardiogram monitoring in nephrotic patients during methylprednisolone pulse therapy. Am J Nephrol. 1990;10:231–6.

    Article  CAS  PubMed  Google Scholar 

  285. Chiappini B, El Khoury G. Risk of atrial fibrillation with high-dose corticosteroids. Expert Opin Drug Saf. 2006;5:811–4.

    Article  CAS  PubMed  Google Scholar 

  286. Imazio M, Brucato A, Forno D, et al. Efficacy and safety of colchicine for pericarditis prevention. Systematic review and meta-analysis. Heart. 2012;98:1078–82.

    Article  CAS  PubMed  Google Scholar 

  287. Deftereos S, Giannopoulos G, Kossyvakis C, et al. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: a randomized controlled study. J Am Coll Cardiol. 2012;60:1790–6.

    Article  CAS  PubMed  Google Scholar 

  288. Deftereos S, Giannopoulos G, Efremidis M, et al. Colchicine for prevention of atrial fibrillation recurrence after pulmonary vein isolation: mid-term efficacy and effect on quality of life. Heart Rhythm. 2014;11:620–8.

    Article  PubMed  Google Scholar 

  289. Head BP, Patel HH, Roth DM, et al. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem. 2006;281:26391–9.

    Article  CAS  PubMed  Google Scholar 

  290. Van Wagoner DR. Colchicine for the prevention of postoperative atrial fibrillation: a new indication for a very old drug? Circulation. 2011;124:2281–2.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Imazio M, Brucato A, Ferrazzi P, et al. Colchicine reduces postoperative atrial fibrillation: results of the Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) atrial fibrillation substudy. Circulation. 2011;124:2290–5.

    Article  CAS  PubMed  Google Scholar 

  292. Imazio M, Brucato A, Ferrazzi P, et al. Colchicine for prevention of postpericardiotomy syndrome and postoperative atrial fibrillation: the COPPS-2 randomized clinical trial. JAMA. 2014;312:1016–23.

    Article  CAS  PubMed  Google Scholar 

  293. Fatemi O, Yuriditsky E, Tsioufis C, et al. Impact of intensive glycemic control on the incidence of atrial fibrillation and associated cardiovascular outcomes in patients with type 2 diabetes mellitus (from the action to control cardiovascular risk in diabetes study). Am J Cardiol. 2014;114:1217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Chang SH, Wu LS, Chiou MJ, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13:123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Shimano M, Tsuji Y, Inden Y, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma activator, attenuates atrial fibrosis and atrial fibrillation promotion in rabbits with congestive heart failure. Heart Rhythm. 2008;5:451–9.

    Article  PubMed  Google Scholar 

  296. Kume O, Takahashi N, Wakisaka O, et al. Pioglitazone attenuates inflammatory atrial fibrosis and vulnerability to atrial fibrillation induced by pressure overload in rats. Heart Rhythm. 2011;8:278–85.

    Article  PubMed  Google Scholar 

  297. Xu D, Murakoshi N, Igarashi M, et al. Ppar-gamma activator pioglitazone prevents age-related atrial fibrillation susceptibility by improving antioxidant capacity and reducing apoptosis in a rat model. J Cardiovasc Electrophysiol. 2012;23:209–17.

    Article  PubMed  Google Scholar 

  298. Nakajima T, Iwasawa K, Oonuma H, et al. Troglitazone inhibits voltage-dependent calcium currents in guinea pig cardiac myocytes. Circulation. 1999;99:2942–50.

    Article  CAS  PubMed  Google Scholar 

  299. Liu T, Zhao H, Li J, et al. Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxan-induced diabetic rabbits. Cardiovasc Ther. 2014;32:178–83.

    Article  CAS  PubMed  Google Scholar 

  300. Gu J, Liu X, Wang X, et al. Beneficial effect of pioglitazone on the outcome of catheter ablation in patients with paroxysmal atrial fibrillation and type 2 diabetes mellitus. Europace. 2011;13:1256–61.

    Article  PubMed  Google Scholar 

  301. Korantzopoulos P, Kokkoris S, Kountouris E, et al. Regression of paroxysmal atrial fibrillation associated with thiazolidinedione therapy. Int J Cardiol. 2008;125:e51–3.

    Article  PubMed  Google Scholar 

  302. Chao TF, Leu HB, Huang CC, et al. Thiazolidinediones can prevent new onset atrial fibrillation in patients with noninsulin dependent diabetes. Int J Cardiol. 2012;156:199–202.

    Article  PubMed  Google Scholar 

  303. Liu T, Li G. Probucol and succinobucol in atrial fibrillation: pros and cons. Int J Cardiol. 2010;144:295–6.

    Article  PubMed  Google Scholar 

  304. Fu H, Li G, Liu C, et al. Probucol prevents atrial remodeling by inhibiting oxidative stress and TNF-α/NF-κB/TGF-β signal transduction pathway in alloxan-induced diabetic rabbits. J Cardiovasc Electrophysiol. 2015;26:211–22.

    Article  PubMed  Google Scholar 

  305. Li Y, Sheng L, Li W, et al. Probucol attenuates atrial structural remodeling in prolonged pacing-induced atrial fibrillation in dogs. Biochem Biophys Res Commun. 2009;381:198–203.

    Article  CAS  PubMed  Google Scholar 

  306. Gong YT, Li WM, Li Y, et al. Probucol attenuates atrial autonomic remodeling in a caninemodel of atrial fibrillation produced by prolonged atrial pacing. Chin Med J. 2009;122:74–82.

    CAS  PubMed  Google Scholar 

  307. Liu T, Korantzopoulos P, Li G. Antioxidant therapies for the management of atrial fibrillation. Cardiovasc Diagn Ther. 2012;2:298–307.

    PubMed  PubMed Central  Google Scholar 

  308. Sovari AA, Dudley SC Jr. Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation. Front Physiol. 2012;3:311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51:802–9.

    Article  CAS  PubMed  Google Scholar 

  310. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342.

    Article  CAS  PubMed  Google Scholar 

  311. Mukherjee R, Herron AR, Lowry AS, et al. Selective induction of matrix metalloproteinases and tissue inhibitor of metalloproteinases in atrial and ventricular myocardium in patients with atrial fibrillation. Am J Cardiol. 2006;97:532–7.

    Article  CAS  PubMed  Google Scholar 

  312. Li YY, Feldman AM, Sun Y, et al. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation. 1998;98:1728–34.

    Article  CAS  PubMed  Google Scholar 

  313. Thomas CV, Coker ML, Zellner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998;97:1708–15.

    Article  CAS  PubMed  Google Scholar 

  314. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002;90:520–30.

    Article  CAS  PubMed  Google Scholar 

  315. Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004;35:83–92.

    Article  CAS  PubMed  Google Scholar 

  316. Flesch M, Höper A, Dell'Italia L, et al. Activation and functional significance of the renin-angiotensin system in mice with cardiac restricted overexpression of tumor necrosis factor. Circulation. 2003;108:598–604.

    Article  CAS  PubMed  Google Scholar 

  317. Diwan A, Dibbs Z, Nemoto S, et al. Targeted overexpression of noncleavable and secreted forms of tumor necrosis factor provokes disparate cardiac phenotypes. Circulation. 2004;109:262–8.

    Article  CAS  PubMed  Google Scholar 

  318. Dell'Italia LJ, Meng QC, Balcells E, et al. Compartmentalization of angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces. J Clin Invest. 1997;100:253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Multani MM, Ikonomidis JS, Kim PY, et al. Dynamic and differential changes in myocardial and plasma endothelin in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2005;129:584–90.

    Article  CAS  PubMed  Google Scholar 

  320. Li M, Yang G, Xie B, et al. Changes in matrix metalloproteinase-9 levels during progression of atrial fibrillation. J Int Med Res. 2014;42:224–30.

    Article  CAS  PubMed  Google Scholar 

  321. Nakano Y, Niida S, Dote K, et al. Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J Am Coll Cardiol. 2004;43:818–25.

    Article  CAS  PubMed  Google Scholar 

  322. Lewkowicz J, Knapp M, Tankiewicz-Kwedlo A, et al. MMP-9 in atrial remodeling in patients with atrial fibrillation. Ann Cardiol Angeiol (Paris). 2015;64:285–91.

    Article  CAS  Google Scholar 

  323. Sonmez O, Ertem FU, Vatankulu MA, et al. Novel fibro-inflammation markers in assessing left atrial remodeling in non-valvular atrial fibrillation. Med Sci Monit. 2014;20:463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Hirsh BJ, Copeland-Halperin RS, Halperin JL. Fibrotic atrial cardiomyopathy, atrial fibrillation, and thromboembolism: mechanistic links and clinical inferences. J Am Coll Cardiol. 2015;65:2239–51.

    Article  PubMed  Google Scholar 

  325. Boldt A, Wetzel U, Lauschke J, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart. 2004;90:400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Kottkamp H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur Heart J. 2013;34:2731–8.

    Article  PubMed  Google Scholar 

  327. Platonov PG, Mitrofanova LB, Orshanskaya V, et al. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J Am Coll Cardiol. 2011;58:2225–32.

    Article  PubMed  Google Scholar 

  328. Teh AW, Kistler PM, Lee G, et al. Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. J Cardiovasc Electrophysiol. 2012;23:232–8.

    Article  PubMed  Google Scholar 

  329. Oakes RS, Badger TJ, Kholmovski EG, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119:1758–67.

    Article  PubMed  PubMed Central  Google Scholar 

  330. Hoit BD, Takeishi Y, Cox MJ, et al. Remodeling of the left atrium in pacing-induced atrial cardiomyopathy. Mol Cell Biochem. 2002;238:145–50.

    Article  CAS  PubMed  Google Scholar 

  331. Chen CL, Huang SK, Lin JL, et al. Upregulation of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases in rapid atrial pacing-induced atrial fibrillation. J Mol Cell Cardiol. 2008;45:742–53.

    Article  CAS  PubMed  Google Scholar 

  332. Marin F, Roldan V, Climent V, et al. Is thrombogenesis in atrial fibrillation related to matrix metalloproteinase-1 and its inhibitor, TIMP-1? Stroke. 2003;34:1181–6.

    Article  CAS  PubMed  Google Scholar 

  333. Anné W, Willems R, Roskams T, et al. Matrix metalloproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation. Cardiovasc Res. 2005;67:655–66.

    Article  PubMed  CAS  Google Scholar 

  334. Nagatomo Y, Carabello BA, Coker ML, et al. Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol. 2000;278:H151–61.

    Article  CAS  PubMed  Google Scholar 

  335. Khan A, Moe GW, Nili N, et al. The cardiac atria are chambers of active remodeling and dynamic collagen turnover during evolving heart failure. J Am Coll Cardiol. 2004;43:68–76.

    Article  CAS  PubMed  Google Scholar 

  336. Zervoudaki A, Economou E, Stefanadis C, et al. Plasma levels of active extracellular matrix metalloproteinases 2 and 9 in patients with essential hypertension before and after antihypertensive treatment. J Hum Hypertens. 2003;17:119–24.

    Article  CAS  PubMed  Google Scholar 

  337. Huxley RR, Lopez FL, MacLehose RF, et al. Novel association between plasma matrix metalloproteinase-9 and risk of incident atrial fibrillation in a case-cohort study: the Atherosclerosis Risk in Communities study. PLoS One. 2013;8:e59052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Wu G, Wang S, Cheng M, et al. The serum matrix metalloproteinase-9 level is an independent predictor of recurrence after ablation of persistent atrial fibrillation. Clinics (Sao Paulo). 2016;71:251–6.

    Article  Google Scholar 

  339. Kato K, Fujimaki T, Yoshida T, et al. Impact of matrix metalloproteinase-2 levels on long-term outcome following pharmacological or electricalcardioversion in patients with atrial fibrillation. Europace. 2009;11:332–7.

    Article  PubMed  Google Scholar 

  340. Nattel S, Shiroshita-Takeshita A, Cardin S, et al. Mechanisms of atrial remodeling and clinical relevance. Curr Opin Cardiol. 2005;20:21–5.

    PubMed  Google Scholar 

  341. Moe GW, Laurent G, Doumanovskaia L, et al. Matrix metalloproteinase inhibition attenuates atrial remodeling and vulnerability to atrial fibrillation in a canine model of heart failure. J Card Fail. 2008;14:768–76.

    Article  CAS  PubMed  Google Scholar 

  342. Cerisano G, Buonamici P, Gori AM, et al. Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial. Int J Cardiol. 2015;197:147–53.

    Article  PubMed  Google Scholar 

  343. Hughes RC. Mac-2: a versatile galactose-binding protein of mammalian tissues. Glycobiology. 1994;4:5–12.

    Article  CAS  PubMed  Google Scholar 

  344. Barondes SH, Castronovo V, Cooper DN, et al. Galectins: a family of animal beta-galactoside-binding lectins. Cell. 1994;76:597–8.

    Article  CAS  PubMed  Google Scholar 

  345. Clementy N, Piver E, Bisson A, et al. Galectin-3 in atrial fibrillation: mechanisms and therapeutic implications. Int J Mol Sci. 2018;19:976.

    Article  PubMed Central  CAS  Google Scholar 

  346. Mackinnon AC, Gibbons MA, Farnworth SL, et al. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med. 2012;185:537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Ho JE, Yin X, Levy D, et al. Galectin 3 and incident atrial fibrillation in the community. Am Heart J. 2014;167:729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. van der Velde AR, Meijers WC, Ho JE, et al. Serial galectin-3 and future cardiovascular disease in the general population. Heart. 2016;102:1134–41.

    Article  PubMed  CAS  Google Scholar 

  349. Fashanu OE, Norby FL, Aguilar D, et al. Galectin-3 and incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Am Heart J. 2017;192:19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Clementy N, Piver E, Benhenda N, et al. Galectin-3 in patients undergoing ablation of atrial fibrillation. IJC Metabolic Endocrine. 2014;5:56–60.

    Article  Google Scholar 

  351. Takemoto Y, Ramirez RJ, Yokokawa M, et al. Galectin-3 regulates atrial fibrillation remodeling and predicts catheter ablation outcomes. JACC Basic Transl Sci. 2016;1:143–54.

    Article  PubMed  PubMed Central  Google Scholar 

  352. Yalcin MU, Gurses KM, Kocyigit D, et al. The association of serum galectin-3 levels with atrial electrical and structural remodeling. J Cardiovasc Electrophysiol. 2015;26:635–40.

    Article  PubMed  Google Scholar 

  353. Verma A, Mantovan R, Macle L, et al. Substrate and Trigger Ablation for Reduction of Atrial Fibrillation (STAR AF): a randomized, multicentre, international trial. Eur Heart J. 2010;31:1344–56.

    Article  PubMed  PubMed Central  Google Scholar 

  354. Wu XY, Li SN, Wen SN, et al. Plasma galectin-3 predicts clinical outcomes after catheter ablation in persistent atrial fibrillation patients without structural heart disease. Europace. 2015;17:1541–7.

    Article  PubMed  Google Scholar 

  355. Clementy N, Benhenda N, Piver E, et al. Serum galectin-3 levels predict recurrences after ablation of atrial fibrillation. Sci Rep. 2016;6:34357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Kornej J, Schmidl J, Ueberham L. Galectin-3 in patients with atrial fibrillation undergoing radiofrequency catheter ablation. PLoS One. 2015;10:e0123574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Yu L, Ruifrok WP, Meissner M, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6:107–17.

    Article  CAS  PubMed  Google Scholar 

  358. Tellez-Sanz R, Garcia-Fuentes L, Vargas-Berenguel A. Human galectin-3 selective and high affinity inhibitors. Present state and future perspectives. Curr Med Chem. 2013;20:2979–90.

    Article  CAS  PubMed  Google Scholar 

  359. Ohki R, Yamamoto K, Ueno S, et al. Gene expression profiling of human atrial myocardium with atrial fibrillation by DNA microarray analysis. Int J Cardiol. 2005;102:233–8.

    Article  PubMed  Google Scholar 

  360. Kim YH, Lim DS, Lee JH, et al. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med. 2003;35:336–49.

    Article  CAS  PubMed  Google Scholar 

  361. Lai LP, Lin JL, Lin CS, et al. Functional genomic study on atrial fibrillation using cDNA microarray and two-dimensional protein electrophoresis techniques and identification of the myosin regulatory light chain isoform reprogramming in atrial fibrillation. J Cardiovasc Electrophysiol. 2004;15:214–23.

    Article  PubMed  Google Scholar 

  362. Kim NH, Ahn Y, Oh SK, et al. Altered patterns of gene expression in response to chronic atrial fibrillation. Int Heart J. 2005;46:383–95.

    Article  CAS  PubMed  Google Scholar 

  363. Kharlap MS, Timofeeva AV, Goryunova LE, et al. Atrial appendage transcriptional profile in patients with atrial fibrillation with structural heart diseases. Ann N Y Acad Sci. 2006;1091:205–17.

    Article  CAS  PubMed  Google Scholar 

  364. Censi F, Calcagnini G, Bartolini P, et al. A systems biology strategy on differential gene expression data discloses some biological features of atrial fibrillation. PLoS One. 2010;5:e13668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  365. Scridon A, Fouilloux-Meugnier E, Loizon E, et al. Long-standing arterial hypertension is associated with Pitx2 down-regulation in a rat model of spontaneous atrial tachyarrhythmias. Europace. 2015;17:160–5.

    Article  PubMed  Google Scholar 

  366. Doñate Puertas R, Meugnier E, Romestaing C, et al. Atrial fibrillation is associated with hypermethylation in human left atrium, and treatment with decitabine reduces atrial tachyarrhythmias in spontaneously hypertensive rats. Transl Res. 2017;184:57–67.

    Article  PubMed  CAS  Google Scholar 

  367. Yao M, Cao Y, Zhu H, et al. Paired-like homeodomain 2: a novel therapeutic target for atrial fibrillation? Front Genet. 2014;5:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  368. Perez-Hernandez M, Matamoros M, Barana A, et al. Pitx2c increases in atrial myocytes from chronic atrial fibrillation patients enhancing IKs and decreasing ICa,L. Cardiovasc Res. 2016;109:431–41.

    Article  CAS  PubMed  Google Scholar 

  369. Gore-Panter SR, Hsu J, Hanna P, et al. Atrial fibrillation associated chromosome 4q25 variants are not associated with PITX2c expression in human adult left atrial appendages. PLoS One. 2014;9:e86245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  370. Kahr PC, Piccini I, Fabritz L, et al. Systematic analysis of gene expression differences between left and right atria in different mouse strains and in human atrial tissue. PLoS One. 2011;6:e26389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Şerban RC, Scridon A. Data linking diabetes mellitus and atrial fibrillation-how strong is the evidence? From epidemiology and pathophysiology to therapeutic implications. Can J Cardiol. 2018;34:1492–502.

    Article  PubMed  Google Scholar 

  372. Kirchhof P, Kahr PC, Kaese S, et al. PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression. Circ Cardiovasc Genet. 2011;4:123–33.

    Article  CAS  PubMed  Google Scholar 

  373. Huang Z, Chen XJ, Qian C, et al. Signal transducer and activator of transcription 3/MicroRNA-21 feedback loop contributes to atrial fibrillation by promoting atrial fibrosis in a rat sterile pericarditis model. Circ Arrhythm Electrophysiol. 2016;9:e003396.

    PubMed  PubMed Central  Google Scholar 

  374. Adam O, Löhfelm B, Thum T, et al. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol. 2012;107:278.

    Article  PubMed  CAS  Google Scholar 

  375. Cardin S, Guasch E, Luo X, et al. Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circ Arrhythm Electrophysiol. 2012;5:1027–35.

    Article  CAS  PubMed  Google Scholar 

  376. Doñate Puertas R, Jalabert A, Meugnier E, et al. Analysis of the microRNA signature in left atrium from patients with valvular heart disease reveals their implications in atrial fibrillation. PLoS One. 2018;13:e0196666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  377. Scridon A, Gallet C, Arisha MM, et al. Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: the role of the autonomic nervous system. Am J Physiol Heart Circ Physiol. 2012;303:H386–92.

    Article  CAS  PubMed  Google Scholar 

  378. Orlov MV, Ghali JK, Araghi-Niknam M, et al. Asymptomatic atrial fibrillation in pacemaker recipients: incidence, progression, and determinants based on the atrial high rate trial. Pacing Clin Electrophysiol. 2007;30:404–11.

    Article  PubMed  Google Scholar 

  379. Ioannidis JP, Evans SJ, Gotzsche PC, et al. Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann Intern Med. 2004;141:781–8.

    Article  PubMed  Google Scholar 

  380. Dan GA, Martinez-Rubio A, Agewall S, et al. Antiarrhythmic drugs-clinical use and clinical decision making: a consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) Working Group on Cardiovascular Pharmacology, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and International Society of Cardiovascular Pharmacotherapy (ISCP). Europace. 2018;20:731–2.

    Article  PubMed  Google Scholar 

  381. Iravanian S, Dudley SC Jr. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm. 2008;5:S12–7.

    Article  PubMed  PubMed Central  Google Scholar 

  382. Rienstra M, Hobbelt AH, Alings M, et al. Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: results of the RACE 3 trial. Eur Heart J. 2018;39:2987–96.

    Article  CAS  PubMed  Google Scholar 

  383. Zhao Z, Niu X, Dong Z, et al. Upstream therapeutic strategies of valsartan and fluvastatin on hypertensive patients with non-permanent atrial fibrillation. Cardiovasc Ther. 2018;36:e12478.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scridon, A., Martínez-Rubio, A. (2020). Antiarrhythmic Properties of Non-Antiarrhythmic Drugs in Atrial Fibrillation: Upstream Therapy. In: Martínez-Rubio, A., Tamargo, J., Dan, G . (eds) Antiarrhythmic Drugs. Current Cardiovascular Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-34893-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34893-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34891-5

  • Online ISBN: 978-3-030-34893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics