Skip to main content

Heparanase in the Coagulation System

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

The hemostatic cascade is initiated by the transmembrane coagulation protein – tissue factor (TF) and eventuates in fibrin formation. Heparanase protein was demonstrated to directly enhance TF activity resulting in increased activation of the coagulation system. In addition, heparanase was found to increase hemostatic system activation via two other mechanisms: up-regulating TF expression in endothelial cells and releasing the protein tissue factor pathway inhibitor (TFPI) from the cell surface. Peptides derived from TFPI-2, a protein similar to TFPI, were shown to inhibit the TF/heparanase complex as well as attenuate sepsis and tumor growth. Increased heparanase procoagulant activity was observed in several clinical settings, including women using oral contraceptives, women at delivery, patients following orthopedic surgery and patients with diabetic foot, shift work female nurses, patients with lung cancer, retinal vein thrombosis and prosthetic heart valve thrombosis. Remarkably, the heparanase profile was significantly different across the tested groups. Inhibition of TF / heparanase interaction may represent a new target for attenuating coagulation, cancer and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camerer, E., Kolsto, A. B., & Prydz, H. (1996). Cell biology of tissue factor, the principal initiator of blood coagulation. Thrombosis Research, 81(1), 1–41.

    Article  CAS  PubMed  Google Scholar 

  2. Corseaux, D., Meurice, T., Six, I., et al. (2000). Basic fibroblast growth factor increases tissue factor expression in circulating monocytes and in vascular wall. Circulation, 101(16), 2000–2006.

    Article  CAS  PubMed  Google Scholar 

  3. Ernofsson, M., & Siegbahn, A. (1996). Platelet-derived growth factor-BB and monocyte chemotactic protein-1 induce human peripheral blood monocytes to express tissue factor. Thrombosis Research, 83(4), 307–320.

    Article  CAS  PubMed  Google Scholar 

  4. Clauss, M., Murray, J. C., Vianna, M., et al. (1990). A polypeptide factor produced by fibrosarcoma cells that induces endothelial tissue factor and enhances the procoagulant response to tumor necrosis factor/cachectin. The Journal of Biological Chemistry, 265(12), 7078–7083.

    CAS  PubMed  Google Scholar 

  5. Collins, P. W., Noble, K. E., Reittie, J. R., et al. (1995). Induction of tissue factor expression in human monocyte/endothelium cocultures. British Journal of Haematology, 91(4), 963–970.

    Article  CAS  PubMed  Google Scholar 

  6. Yan, S. F., Pinsky, D. J., & Stern, D. M. (2000). A pathway leading to hypoxia-induced vascular fibrin deposition. Seminars in Thrombosis and Hemostasis, 26(5), 479–483.

    Article  CAS  PubMed  Google Scholar 

  7. Drake, T. A., & Pang, M. (1989). Effects of interleukin-1, lipopolysaccharide, and streptococci on procoagulant activity of cultured human cardiac valve endothelial and stromal cells. Infection and Immunity, 57(2), 507–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y., Deng, Y., Luther, T., et al. (1994). Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. The Journal of Clinical Investigation, 94(3), 1320–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakasaki, T., Wada, H., Shigemori, C., et al. (2002). Expression of tissue factor and vascular endothelial growth factor is associated with angiogenesis in colorectal cancer. American Journal of Hematology, 69(4), 247–254.

    Article  CAS  PubMed  Google Scholar 

  10. Contrino, J., Hair, G., Kreutzer, D. L., & Rickles, F. R. (1996). In situ detection of tissue factor in vascular endothelial cells: Correlation with the malignant phenotype of human breast disease. Nature Medicine, 2(2), 209–215.

    Article  CAS  PubMed  Google Scholar 

  11. Koomagi, R., & Volm, M. (1998). Tissue-factor expression in human non-small-cell lung carcinoma measured by immunohistochemistry: Correlation between tissue factor and angiogenesis. International Journal of Cancer, 79(1), 19–22.

    Article  CAS  PubMed  Google Scholar 

  12. Carmeliet, P., Mackman, N., Moons, L., et al. (1996). Role of tissue factor in embryonic blood vessel development. Nature, 383(6595), 73–75.

    Article  CAS  PubMed  Google Scholar 

  13. Nadir, Y., Brenner, B., Zetser, A., et al. (2006). Heparanase induces tissue factor expression in vascular endothelial and cancer cells. Journal of Thrombosis and Haemostasis, 4(11), 2443–2451.

    Article  CAS  PubMed  Google Scholar 

  14. Lwaleed, B. A., & Bass, P. S. (2006). Tissue factor pathway inhibitor: Structure, biology and involvement in disease. The Journal of Pathology, 208(3), 327–339.

    Article  CAS  PubMed  Google Scholar 

  15. Kamikura, Y., Wada, H., Yamada, A., et al. (1997). Increased tissue factor pathway inhibitor in patients with acute myocardial infarction. American Journal of Hematology, 55(4), 183–187.

    Article  CAS  PubMed  Google Scholar 

  16. Leurs, P. B., Stolk, R. P., Hamulyak, K., et al. (2002). Tissue factor pathway inhibitor and other endothelium-dependent hemostatic factors in elderly individuals with normal or impaired glucose tolerance and type 2 diabetes. Diabetes Care, 25(8), 1340–1345.

    Article  CAS  PubMed  Google Scholar 

  17. Yamamuro, M., Wada, H., Kumeda, K., et al. (1998). Changes in plasma tissue factor pathway inhibitor levels during the clinical course of disseminated intravascular coagulation. Blood Coagulation & Fibrinolysis, 9(6), 491–497.

    Article  CAS  Google Scholar 

  18. Iversen, N., Lindahl, A. K., & Abildgaard, U. (1998). Elevated TFPI in malignant disease: Relation to cancer type and hypercoagulation. British Journal of Haematology, 102(4), 889–895.

    Article  CAS  PubMed  Google Scholar 

  19. Iversen, N., Lindahl, A. K., & Abildgaard, U. (2002). Elevated plasma levels of the factor Xa-TFPI complex in cancer patients. Thrombosis Research, 105(1), 33–36.

    Article  CAS  PubMed  Google Scholar 

  20. Al-Mugeiren, M. M., Abdel Gader, A. G., Al-Rasheed, S. A., & Al-Salloum, A. A. (2006). Tissue factor pathway inhibitor in childhood nephrotic syndrome. Pediatric Nephrology, 21(6), 771–777.

    Article  PubMed  Google Scholar 

  21. Nadir, Y., Brenner, B., Gingis-Velitski, S., et al. (2008). Heparanase induces tissue factor pathway inhibitor expression and extracellular accumulation in endothelial and tumor cells. Thrombosis and Haemostasis, 99(1), 133–141.

    Article  CAS  PubMed  Google Scholar 

  22. Nadir, Y., Brenner, B., Fux, L., et al. (2010). Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII. Haematologica, 95(11), 1927–1934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baker, A. B., Gibson, W. J., Kolachalama, V. B., et al. (2012). Heparanase regulates thrombosis in vascular injury and stent-induced flow disturbance. Journal of the American College of Cardiology, 59(17), 1551–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sprecher, C. A., Kisiel, W., Mathewes, S., & Foster, D. C. (1994). Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 91(8), 3353–3357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parish, C. R., Freeman, C., & Hulett, M. D. (2001). Heparanase: A key enzyme involved in cell invasion. Biochimica et Biophysica Acta, 1471(3), M99–M108.

    CAS  PubMed  Google Scholar 

  26. Vlodavsky, I., & Friedmann, Y. (2001). Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. The Journal of Clinical Investigation, 108(3), 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Udagawa, K., Yasumitsu, H., Esaki, M., et al. (2002). Subcellular localization of PP5/TFPI-2 in human placenta: A possible role of PP5/TFPI-2 as an anti-coagulant on the surface of syncytiotrophoblasts. Placenta, 23(2–3), 145–153.

    Article  CAS  PubMed  Google Scholar 

  28. Tatour, M., Shapira, M., Axelman, E., et al. (2017). Thrombin is a selective inducer of heparanase release from platelets and granulocytes via protease-activated receptor-1. Thrombosis and Haemostasis, 117(7), 1391–1401.

    Article  PubMed  Google Scholar 

  29. Cui, H., Tan, Y. X., Osterholm, C., et al. (2016). Heparanase expression upregulates platelet adhesion activity and thrombogenicity. Oncotarget, 7(26), 39486–39496.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tan, Y. X., Cui, H., Wan, L. M., et al. (2018). Overexpression of heparanase in mice promoted megakaryopoiesis. Glycobiology, 28(5), 269–275.

    Article  CAS  PubMed  Google Scholar 

  31. Ward, A. C., Touw, I., & Yoshimura, A. (2000). The Jak-stat pathway in normal and perturbed hematopoiesis. Blood, 95(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  32. Parganas, E., Wang, D., Stravopodis, D., et al. (1998). Jak2 is essential for signaling through a variety of cytokine receptors. Cell, 93(3), 385–395.

    Article  CAS  PubMed  Google Scholar 

  33. Silvennoinen, O., Witthuhn, B. A., Quelle, F. W., et al. (1993). Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 90(18), 8429–8433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kogan, I., Chap, D., Hoffman, R., et al. (2016). JAK-2 V617F mutation increases heparanase procoagulant activity. Thrombosis and Haemostasis, 115(1), 73–80.

    Article  PubMed  Google Scholar 

  35. Axelman, E., Henig, I., Crispel, Y., et al. (2014). Novel peptides that inhibit heparanase activation of the coagulation system. Thrombosis and Haemostasis, 112(3), 466–477.

    Article  CAS  PubMed  Google Scholar 

  36. Crispel, Y., Ghanem, S., Attias, J., et al. (2017). Involvement of the heparanase procoagulant domain in bleeding and wound healing. Journal of Thrombosis and Haemostasis, 15(7), 1463–1472.

    Article  CAS  PubMed  Google Scholar 

  37. Nadir, Y., Kenig, Y., Drugan, A., Shafat, I., & Brenner, B. (2011). An assay to evaluate heparanase procoagulant activity. Thrombosis Research, 128(4), e3–e8.

    Article  CAS  PubMed  Google Scholar 

  38. Shafat, I., Zcharia, E., Nisman, B., et al. (2006). An ELISA method for the detection and quantification of human heparanase. Biochemical and Biophysical Research Communications, 341(4), 958–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matan, M., Axelman, E., Brenner, B., & Nadir, Y.Heparanase procoagulant activity is elevated in women using oral contraceptives. Human Reproduction, 28(9), 2372–2380.

    Google Scholar 

  40. Peled, E., Rovitsky, A., Axelman, E., et al. (2012). Increased heparanase level and procoagulant activity in orthopedic surgery patients receiving prophylactic dose of enoxaparin. Thrombosis Research, 130(1), 129–134.

    Article  CAS  PubMed  Google Scholar 

  41. Matan, M., King, D., Peled, E., et al. (2017). Heparanase level and procoagulant activity are reduced in severe sepsis. European Journal of Haematology.

    Google Scholar 

  42. Nadir, Y., Saharov, G., Hoffman, R., et al. (2015). Heparanase procoagulant activity, factor Xa, and plasminogen activator inhibitor 1 are increased in shift work female nurses. Annals of Hematology, 94(7), 1213–1219.

    Article  CAS  PubMed  Google Scholar 

  43. Peled, E., Melamed, E., Portal, T. B., et al. (2016). Heparanase procoagulant activity as a predictor of wound necrosis following diabetic foot amputation. Thrombosis Research, 139, 148–153.

    Article  CAS  PubMed  Google Scholar 

  44. Lanir, N., Aharon, A., & Brenner, B. (2003). Procoagulant and anticoagulant mechanisms in human placenta. Seminars in Thrombosis and Hemostasis, 29(2), 175–184.

    Article  CAS  PubMed  Google Scholar 

  45. Haimov-Kochman, R., Friedmann, Y., Prus, D., et al. (2002). Localization of heparanase in normal and pathological human placenta. Molecular Human Reproduction, 8(6), 566–573.

    Article  CAS  PubMed  Google Scholar 

  46. Goshen, R., Hochberg, A. A., Korner, G., et al. (1996). Purification and characterization of placental heparanase and its expression by cultured cytotrophoblasts. Molecular Human Reproduction, 2(9), 679–684.

    Article  CAS  PubMed  Google Scholar 

  47. Nadir, Y., Henig, I., Naroditzky, I., et al. (2010). Involvement of Heparanase in early pregnancy losses. Thrombosis Research, 125(5), e251–e257.

    Article  CAS  PubMed  Google Scholar 

  48. Nadir, Y., Kenig, Y., Drugan, A., Zcharia, E., & Brenner, B. (2010). Involvement of heparanase in vaginal and cesarean section deliveries. Thrombosis Research, 126(6), e444–e450.

    Article  CAS  PubMed  Google Scholar 

  49. McCarthy C, Cotter FE, McElwaine S, et al. 2007 Altered gene expression patterns in intrauterine growth restriction: Potential role of hypoxia. American Journal of Obstetrics and Gynecology,196(1):70 e71–76.

    Google Scholar 

  50. Fetalvero, K. M., Zhang, P., Shyu, M., et al. (2008). Prostacyclin primes pregnant human myometrium for an enhanced contractile response in parturition. The Journal of Clinical Investigation, 118(12), 3966–3979.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Salem, H. T., Westergaard, J. G., Hindersson, P., et al. (1982). Maternal serum levels of placental protein 5 in complications of late pregnancy. Obstetrics and Gynecology, 59(4), 467–471.

    CAS  PubMed  Google Scholar 

  52. Deitcher, S. R., & Gomes, M. P. (2004). The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: A systematic review. Cancer, 101(3), 439–449.

    Article  PubMed  Google Scholar 

  53. Rosing, J., Middeldorp, S., Curvers, J., et al. (1999). Low-dose oral contraceptives and acquired resistance to activated protein C: A randomised cross-over study. Lancet, 354(9195), 2036–2040.

    Article  CAS  PubMed  Google Scholar 

  54. Elkin, M., Cohen, I., Zcharia, E., et al. (2003). Regulation of heparanase gene expression by estrogen in breast cancer. Cancer Research, 63(24), 8821–8826.

    CAS  PubMed  Google Scholar 

  55. Matan, M., Axelman, E., Brenner, B., & Nadir, Y. (2013). Heparanase procoagulant activity is elevated in women using oral contraceptives. Human Reproduction, 28(9), 2372–2380.

    Article  CAS  PubMed  Google Scholar 

  56. Nadir, Y., Sarig, G., Axelman, E., et al. (2014). Heparanase procoagulant activity is elevated and predicts survival in non-small cell lung cancer patients. Thrombosis Research, 134(3), 639–642.

    Article  CAS  PubMed  Google Scholar 

  57. Crispel, Y., Axelman, E., Tatour, M., et al. (2016). Peptides inhibiting heparanase procoagulant activity significantly reduce tumour growth and vascularisation in a mouse model. Thrombosis and Haemostasis, 116(4), 669–678.

    Article  PubMed  Google Scholar 

  58. Hu, Y., Atik, A., Yu, H., et al. (2017). Serum heparanase concentration and heparanase activity in patients with retinal vein occlusion. Acta Ophthalmologica, 95(1), e62–e66.

    Article  CAS  PubMed  Google Scholar 

  59. Bayam, E., Kalcik, M., Gurbuz, A. S., et al. (2018). The relationship between heparanase levels, thrombus burden and thromboembolism in patients receiving unfractionated heparin treatment for prosthetic valve thrombosis. Thrombosis Research, 171, 103–110.

    Article  CAS  PubMed  Google Scholar 

  60. Campisi, J. (2005). Aging, tumor suppression and cancer: High wire-act! Mechanisms of Ageing and Development, 126(1), 51–58.

    Article  CAS  PubMed  Google Scholar 

  61. Bochenek, M. L., Bauer, T., Gogiraju, R., et al. (2018). The endothelial tumor suppressor p53 is essential for venous thrombus formation in aged mice. Blood Adv, 2(11), 1300–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yona Nadir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadir, Y. (2020). Heparanase in the Coagulation System. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_33

Download citation

Publish with us

Policies and ethics