Skip to main content

The Lacritin-Syndecan-1-Heparanase Axis in Dry Eye Disease

  • Chapter
  • First Online:
Heparanase

Abstract

Homeostasis and visual acuity of the surface of the eye are dependent on tears, a thin film comprising at least 1800 different extracellular proteins and numerous species of lipids through which 80% of entering light is refracted at the air interface. Loss of homeostasis in dry eye disease affects 5–7% of the world’s population, yet little is known about key molecular players. Our story began as an unbiased screen for regulators of tearing that led to the discovery of homeostasis-restorative ‘lacritin’, a tear protein whose active form is selectively deficient in dry eye. Heparanase acts as a novel ‘on-switch’ for lacritin ligation of syndecan-1 necessary to trigger basal tearing, as well as pertussis toxin-sensitive and FOXO-dependent signaling pathways for healing of inflammation-damaged epithelia and restoring epithelial oxidative phosphorylation by mitochondrial fusion downstream of transiently accelerated autophagy. A phase 2 clinical trial has tested the applicability of this mechanism to the resolution of dry eye disease. Results are not yet available. With lacritin proteoforms detected in cerebral spinal fluid, plasma, and urine, the capacity of the lacritin-syndecan-1-heparanase axis to restore homeostasis might have wide systemic relevance to other organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kritsky, G. (2015). The tears of re: Beekeeping in ancient Egypt. Oxford University Press.

    Google Scholar 

  2. Craig, J. P., Nichols, K. K., Akpek, E. K., Caffery, B., Dua, H. S., Joo, C. K., Liu, Z., et al. (2017). TFOS DEWS II definition and classification report. Ocular Surf., 15, 269–275.

    Article  Google Scholar 

  3. Research in dry eye: report of the Research Subcommittee of the International Dry Eye WorkShop. Ocular Surf.2007; 5:75–92.

    Google Scholar 

  4. Karnati, R., Laurie, D. E., & Laurie, G. W. (2013). Lacritin and the tear proteome as natural replacement therapy for dry eye. Experimental Eye Research, 117, 39–52.

    Article  CAS  PubMed  Google Scholar 

  5. Willcox, M. D. P., Argüeso, P., Georgiev, G. A., Holopainen, J. M., Laurie, G. W., Millar, T. J., Papas, E. B., Rolland, J. P., Schmidt, T. A., Stahl, U., Suarez, T., Subbaraman, L. N., Uçakhan, O. Ö., & Jones, L. (2017). TFOS DEWSII tear film report. The Ocular Surface, 15, 366–403.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sanghi, S., Kumar, R., Lumsden, A., Dickinson, D., Klepeis, V., Trinkaus-Randall, V., Frierson, H. F., Jr., & Laurie, G. W. (2001). cDNA and genomic cloning of lacritin, a novel secretion enhancing factor from the human lacrimal gland. Journal of Molecular Biology, 310, 127–139.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y., Wang, N., Raab, R. W., McKown, R. L., Irwin, J. A., Kwon, I., van Kuppevelt, T. H., & Laurie, G. W. (2013). Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity. The Journal of Biological Chemistry, 288, 12090–12101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schenk, S., Schoenhals, G. J., de Souza, G., & Mann, M. (2008). A high confidence, manually validated human blood plasma protein reference set. BMC Medical Genomics, 15, 1–41.

    Google Scholar 

  9. Chiasserini, D., van Weering, J. R. T., Piersma, S. R., Pham, T. V., Malekzadeh, A., Teunissen, C. E., Wit, H., & Jimenez, C. R. (2014). Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. Proteom, 106, 191–204.

    Article  CAS  Google Scholar 

  10. Kentsis, A., Monigatti, F., Dorff, K., Campagne, F., Bachur, R., & Steen, H. (2009). Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics. Clinical Applications, 3, 1052–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gipson, I. K. (2007). The ocular surface: The challenge to enable and protect vision. Investigative Ophthalmology & Visual Science, 48, 4391–4398.

    Article  Google Scholar 

  12. Shaheen, B., Bakir, M., & Jain, S. (2014). Corneal nerves in health and disease. Survey of Ophthalmology, 59, 263–285.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ambati, B. K., Nozaki, M., Singh, N., Takeda, A., Jani, P. D., Suthar, T., Albuquerque, R. J., Richter, E., Sakurai, E., Newcomb, M. T., Kleinman, M. E., Caldwell, R. B., Lin, Q., Ogura, Y., Orecchia, A., Samuelson, D. A., Agnew, D. W., St Leger, J., Green, W. R., Mahasreshti, P. J., Curiel, D. T., Kwan, D., Marsh, H., Ikeda, S., Leiper, L. J., Collinson, J. M., Bogdanovich, S., Khurana, T. S., Shibuya, M., Baldwin, M. E., Ferrara, N., Gerber, H. P., De Falco, S., Witta, J., Baffi, J. Z., Raisler, B. J., & Ambati, J. (2006). Corneal avascularity is due to soluble VEGF receptor-1. Nature, 443, 993–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McDermott, A. M. (2013). Antimicrobial compounds in tears. Experimental Eye Research, 117, 53–61.

    Article  CAS  PubMed  Google Scholar 

  15. Spadea, L., Maraone, G., Verboschi, F., Vingolo, E. M., & Tognetto, D. (2016). Effect of corneal light scatter on vision: A review of the literature. International Journal of Ophthalmology, 9, 459–464.

    PubMed  PubMed Central  Google Scholar 

  16. Laurie, G. W., Glass, J. D., Ogle, R. A., Stone, C. M., Sluss, J. R., & Chen, L. (1996). "BM180": A novel basement membrane protein with a role in stimulus-secretion coupling by lacrimal acinar cells. The American Journal of Physiology, 270, 1743–1750.

    Article  Google Scholar 

  17. Samudre, S., Lattanzio, F. A., Jr., Lossen, V., Hosseini, A., Sheppard, J. D., Jr., McKown, R. L., Laurie, G. W., & Williams, P. B. (2011). Lacritin, a novel human tear glycoprotein, promotes sustained basal tearing and is well tolerated. Investigative Ophthalmology & Visual Science, 52, 6265–6270.

    Article  CAS  Google Scholar 

  18. Vijmasi, T., Chen, F. Y. T., Balasubbu, S., Gallup, M., McKown, R. L., Laurie, G. W., & McNamara, N. A. (2014). Topical Administration of Lacritin is a novel therapy for aqueous-deficient dry eye disease. Investigative Ophthalmology & Visual Science, 55, 5401–5409.

    Article  CAS  Google Scholar 

  19. Fujii, A., Morimoto-Tochigi, A., Walkup, R. D., Shearer, T. R., & Azuma, M. (2013). Lacritin-induced secretion of tear proteins from cultured monkey lacrimal Acinar cells. Investigative Ophthalmology & Visual Science, 54, 2533–2540.

    Article  CAS  Google Scholar 

  20. Wang, W., Jashnani, A., Aluri, S. R., Gustafson, J. A., Hsueh, P. Y., Yarber, F., McKown, R. L., Laurie, G. W., Hamm-Alvarez, S. F., & MacKay, J. A. (2015). A thermo-responsive protein treatment for dry eyes. Journal of Controlled Release, 199, 156–167.

    Article  CAS  PubMed  Google Scholar 

  21. Laurie, D. E., Splan, R. K., Green, K., Still, K. M., McKown, R. L., & Laurie, G. W. (2012). Detection of Prosecretory mitogen Lacritin in nonprimate tears primarily as a C-terminal-like fragment. Investigative Ophthalmology & Visual Science, 53, 6130–6136.

    Article  CAS  Google Scholar 

  22. Wang, J., Wang, N., Xie, J., Walton, S. C., McKown, R. L., Raab, R. W., Ma, P., Beck, S. L., Coffman, G. L., Hussaini, I. M., & Laurie, G. W. (2006). Restricted epithelial proliferation by lacritin via PKCalpha-dependent NFAT and mTOR pathways. The Journal of Cell Biology, 174, 689–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, N., Zimmerman, K., Raab, R. W., McKown, R. L., Hutnik, C. M., Talla, V., Tyler, M. F., 4th, Lee, J. K., & Laurie, G. W. (2013). Lacritin rescues stressed epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy that restores metabolism. The Journal of Biological Chemistry, 288, 18146–18161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, M. C., Lee, D. F., Xia, W., Golfman, L. S., Ou-Yang, F., Yang, J. Y., Zou, Y., et al. (2004). IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell, 117(2), 225–237.

    Article  CAS  PubMed  Google Scholar 

  25. Chiacchiera, F., & Simone, C. (2009). Inhibition of p38alpha unveils an AMPK-FoxO3A axis linking autophagy to cancer-specific metabolism. Autophagy, 5, 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  26. Karnati, R., Talla, V., Peterson, K., & Laurie, G. W. (2016). Lacritin and other autophagy associated proteins in ocular surface health. Experimental Eye Research, 144, 4–13.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, Y., Yang, J., Liao, W., Liu, X., Zhang, H., Wang, S., Wang, D., Feng, J., Yu, L., & Zhu, W. G. (2010). Cytosolic FOXO1 is essential for the induction of autophagy and tumour suppressor activity. Nature Cell Biology, 12, 665–675.

    Article  CAS  PubMed  Google Scholar 

  28. Ericson, K., Gan, C., Cheong, I., Rago, C., Samuels, Y., Velculescu, V. E., Kinzler, K. W., Huso, D. L., Vogelstein, B., & Papadopoulos, N. (2010). Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proceedings of the National Academy of Sciences of the United States of America, 107, 2598–2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, H. Y., Srinivas, H., Xia, D., Lu, Y., Superty, R., LaPushin, R., Gomez-Manzano, C., Gal, A. M., Walsh, G. L., Force, T., Ueki, K., Mills, G. B., Kurie, J. M. (2003) Evidence that phosphatidylinositol 3-kinase- and mitogen-activated protein kinase kinase-4/c-Jun NH2-terminal kinase-dependent Pathways cooperate to maintain lung cancer cell survival. J Biol Chem , 278, 23630–23638.

    Google Scholar 

  30. Loughner, C. L., Tiwari, A., Kenchegowda, D., Swamynathan, S., & Swamynathan, S. K. (2017). Spatiotemporally controlled ablation of Klf5 results in Dysregulated epithelial homeostasis in adult mouse corneas. Investigative Ophthalmology & Visual Science, 58, 4683–4693.

    Article  CAS  Google Scholar 

  31. Wang, W., Despanie, J., Shi, P., Edman-Woolcott, M. C., Lin, Y. A., Cui, H., Heur, J. M., Fini, M. E., Hamm-Alvarez, S. F., & MacKay, J. A. (2014). Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. Journal of Materials Chemistry B, 2, 8131–8141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., & Laurie, G. W. (2006). Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. The Journal of Cell Biology, 174, 1097–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, Y., Macleod, V., Miao, H. Q., Theus, A., Zhan, F., Shaughnessy, J. D., Jr., Sawyer, J., Li, J. P., Zcharia, E., Vlodavsky, I., & Sanderson, R. D. (2007). Heparanase enhances syndecan-1 shedding: A novel mechanism for stimulation of tumor growth and metastasis. The Journal of Biological Chemistry, 282, 13326–13333.

    Article  CAS  PubMed  Google Scholar 

  34. Berk, R. S., Dong, Z., Alousi, S., Kosir, M. A., Wang, Y., & Vlodavsky, I. (2004). Murine ocular Heparanase expression before and during infection with Pseudomonas aeruginosa. Investigative Ophthalmology & Visual Science, 45, 1182–1187.

    Article  Google Scholar 

  35. Shafat, I., Vlodavsky, I., & Ilan, N. (2006). Characterization of mechanisms involved in secretion of active heparanase. The Journal of Biological Chemistry, 281, 23804–23811.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, F., Wang, Y., Kim, M. S., Puthanveetil, P., Ghosh, S., Luciani, D. S., Johnson, J. D., Abrahani, A., & Rodrigues, B. (2010). Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovascular Research, 87, 127–136.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, D., Wan, A., Chiu, A. P., Wang, Y., Wang, F., Neumaier, K., Lal, N., Bround, M. J., Johnson, J. D., Vlodavsky, I., & Rodrigues, B. (2013). Hyperglycemia-induced secretion of endothelial heparanase stimulates a vascular endothelial growth factor autocrine network in cardiomyocytes that promotes recruitment of lipoprotein lipase. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2830–2838.

    Article  CAS  PubMed  Google Scholar 

  38. van Kuppevelt, T. H., Dennissen, M. A., van Venrooij, W. J., Hoet, R. M., & Veerkamp, J. H. (1998). Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. The Journal of Biological Chemistry, 273, 12960–12966.

    Article  PubMed  Google Scholar 

  39. Kokenyesi, R., & Bernfield, M. (1994). Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. The Journal of Biological Chemistry, 269, 12304–12309.

    CAS  PubMed  Google Scholar 

  40. McKown, R. L., Coleman Frazier, E. V., Zadrozny, K. K., Deleault, A. M., Raab, R. W., Ryan, D. S., Sia, R. K., Lee, J. K., & Laurie, G. W. (2014). A cleavage-potentiated fragment of tear lacritin is bactericidal. The Journal of Biological Chemistry, 289, 22172–22182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Velez, V. F., Romano, J. A., McKown, R. L., Green, K., Zhang, L., Raab, R. W., Ryan, D. S., Hutnik, C. M., Frierson, H. F., Jr., & Laurie, G. W. (2013). Tissue transglutaminase is a negative regulator of monomeric lacritin bioactivity. Investigative Ophthalmology & Visual Science, 54, 2123–2132.

    Article  CAS  Google Scholar 

  42. Aragona, P., Aguennouz, M., Rania, L., Postorino, E., Sommario, M. S., Roszkowska, A. M., De Pasquale, M. G., Pisani, A., & Puzzolo, D. (2015). Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease. Ophthalmol, 122, 62–71.

    Article  Google Scholar 

  43. Corrales, R. M., de Paiva, C. S., Li, D. Q., Farley, W. J., Henriksson, J. T., Bergmanson, J. P., & Pflugfelder, S. C. (2011). Entrapment of conjunctival goblet cells by desiccation-induced cornification. Investigative Ophthalmology & Visual Science, 52, 3492–3499.

    Article  CAS  Google Scholar 

  44. McNamara, N. A., Ge, S., Lee, S. M., Enghauser, A. M., Kuehl, L., Chen, F. Y., Gallup, M., & McKown, R. L. (2016). Reduced levels of tear Lacritin are associated with corneal neuropathy in patients with the ocular component of Sjögren’s syndrome. Investigative Ophthalmology & Visual Science, 57, 5237–5243.

    Article  CAS  Google Scholar 

  45. Weigelt, B., Bosma, A. J., & van ’t Veer LJ. (2003). Expression of a novel lacrimal gland gene lacritin in human breast tissues. Journal of Cancer Research and Clinical Oncology, 129(12), 735–736.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support to GWL from EY024327, EY026171, the UVa Pinn Scholar Award, 5T32GM08715 (supporting XH) and an unrestricted gift from TearSolutions, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon W. Laurie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dias-Teixeira, K., Horton, X., McKown, R., Romano, J., Laurie, G.W. (2020). The Lacritin-Syndecan-1-Heparanase Axis in Dry Eye Disease. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_31

Download citation

Publish with us

Policies and ethics