Skip to main content

Battling Bacteria with Free and Surface-Immobilized Polymeric Nanostructures

  • Chapter
  • First Online:
  • 683 Accesses

Abstract

With the discovery of antibiotics, bacterial infections and previously fatal diseases suddenly became curable. During the golden era of antibiotics, new classes of antibiotics were discovered. However, antibiotic-resistant bacteria rapidly evolved while fewer new antimicrobial drugs were discovered and marketed. Today, a growing number of infections are becoming harder to treat as the bacterial resistance is spreading and antibiotics become less effective. Evidently, there is an urgent demand for new strategies that efficiently battle pathogenic bacteria. Among emerging technologies, those involving polymeric nanostructures, especially polymersomes, offer many features that make them attractive candidates for battling infections. Polymersomes can be designed to be biocompatible and respond to various environmental signals. They are more robust than liposomes and can host hydrophobic and hydrophilic antimicrobial compounds, which can be released and act locally. Last but not least, they are biodegradable. Moreover, platforms comprising polymeric nanostructures can be designed as sensors for diagnosing infections. Many of these approaches require the immobilization of the antimicrobial nanostructures on a surface whereby the activity is localized to a specific region. Several recent examples of polymeric nanostructures with antimicrobial activity, both free in solution or immobilized on surfaces, are highlighted and discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4(4):623–632

    Article  CAS  PubMed  Google Scholar 

  2. Hill JM, Clement C, Pogue AI, Bhattacharjee S, Zhao YH, Lukiw WJ (2014) Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front Aging Neurosci 6:127

    PubMed  PubMed Central  Google Scholar 

  3. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X, Yang D, Yang Y, Meng H, Li W, Melgiri ND, Licinio J, Wei H, Xie P (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796

    Article  CAS  PubMed  Google Scholar 

  4. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rigo S, Cai C, Gunkel-Grabole G, Maurizi L, Zhang X, Xu J, Palivan CG (2018) Nanoscience-based strategies to engineer antimicrobial surfaces. Adv Sci:1700892

    Google Scholar 

  6. Najer A, Wu DL, Nussbaumer MG, Schwertz G, Schwab A, Witschel MC, Schafer A, Diederich F, Rottmann M, Palivan CG, Beck HP, Meier W (2016) An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery. Nanoscale 8(31):14858–14869

    Article  CAS  PubMed  Google Scholar 

  7. Abed N, Couvreur P (2014) Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 43(6):485–496

    Article  CAS  PubMed  Google Scholar 

  8. Lam SJ, Wong EHH, Boyer C, Qiao GG (2018) Antimicrobial polymeric nanoparticles. Prog Polym Sci 76:40–64

    Article  CAS  Google Scholar 

  9. Rodríguez-Hernández J (2017) Nano/microstructured antibacterial surfaces. In: Polymers against microorganisms: on the race to efficient antimicrobial materials. Springer International, Cham, pp 125–154

    Chapter  Google Scholar 

  10. Meng JX, Zhang PC, Wang ST (2014) Recent progress in biointerfaces with controlled bacterial adhesion by using chemical and physical methods. Chem Asian J 9(8):2004–2016

    Article  CAS  PubMed  Google Scholar 

  11. Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE (2014) Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 114(21):10976–11026

    Article  CAS  PubMed  Google Scholar 

  12. Hadjesfandiari N, Yu K, Mei Y, Kizhakkedathu JN (2014) Polymer brush-based approaches for the development of infection-resistant surfaces. J Mater Chem B 2(31):4968–4978

    Article  CAS  PubMed  Google Scholar 

  13. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208

    Article  CAS  PubMed  Google Scholar 

  15. Cullen PJ, Steinberg F (2018) To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 19(11):679–696

    Article  CAS  PubMed  Google Scholar 

  16. Cabukusta B, Neefjes J (2018) Mechanisms of lysosomal positioning and movement. Traffic 19(10):761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang XY, Tanner P, Graff A, Palivan CG, Meier W (2012) Mimicking the cell membrane with block copolymer membranes. J Polym Sci Pt A Polym Chem 50(12):2293–2318

    Article  CAS  Google Scholar 

  18. Traversier M, Gaslondes T, Milesi S, Michel S, Delannay E (2018) Polar lipids in cosmetics: recent trends in extraction, separation, analysis and main applications. Phytochem Rev 17(5):1179–1210

    Article  CAS  Google Scholar 

  19. Tran S, DeGiovanni PJ, Piel B, Rai P (2017) Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6

    Google Scholar 

  20. Abu Lila AS, Ishida T (2017) Liposomal delivery systems: design optimization and current applications. Biol Pharm Bull 40(1):1–10

    Article  CAS  PubMed  Google Scholar 

  21. Gunkel-Grabole G, Sigg S, Lomora M, Lorcher S, Palivan CG, Meier WP (2015) Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomater Sci 3(1):25–40

    Article  CAS  PubMed  Google Scholar 

  22. Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30(4-5):267–277

    Article  CAS  PubMed  Google Scholar 

  23. Lorcher S, Meier W (2017) Cosolvent fractionation of PMOXA-b-PDMS-b-PMOXA: bulk separation of triblocks from multiblocks. Eur Polym J 88:575–585

    Article  CAS  Google Scholar 

  24. Mai YY, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41(18):5969–5985

    Article  CAS  PubMed  Google Scholar 

  25. Konishcheva EV, Daubian D, Rigo S, Meier WP (2019) Probing membrane asymmetry of ABC polymersomes. Chem Commun 55(8):1148–1151

    Article  CAS  Google Scholar 

  26. Konishcheva EV, Zhumaev UE, Meier WP (2017) PEO-b-PCL-b-PMOXA triblock copolymers: from synthesis to microscale polymersomes with asymmetric membrane. Macromolecules 50(4):1512–1520

    Article  CAS  Google Scholar 

  27. Konishcheva EV, Zhumaev UE, Kratt M, Oehri V, Meier W (2017) Complex self-assembly behavior of bis-hydrophilic PEO-b-PCL-b-PMOXA triblock copolymers in aqueous solution. Macromolecules 50(18):7155–7168

    Article  CAS  Google Scholar 

  28. Belluati A, Craciun I, Meyer CE, Rigo S, Palivan CG (2019) Enzymatic reactions in polymeric compartments: nanotechnology meets nature. Curr Opin Biotechnol 60:53–62

    Article  CAS  PubMed  Google Scholar 

  29. Itel F, Chami M, Najer A, Lorcher S, Wu DL, Dinu IA, Meier W (2014) Molecular organization and dynamics in polymersome membranes: a lateral diffusion study. Macromolecules 47(21):7588–7596

    Article  CAS  Google Scholar 

  30. Itel F, Najer A, Palivan CG, Meier W (2015) Dynamics of membrane proteins within synthetic polymer membranes with large hydrophobic mismatch. Nano Lett 15(6):3871–3878

    Article  CAS  PubMed  Google Scholar 

  31. Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417):1143–1146

    Article  CAS  PubMed  Google Scholar 

  32. Malinova V, Nallani M, Meier WP, Sinner EK (2012) Synthetic biology, inspired by synthetic chemistry. FEBS Lett 586(15):2146–2156

    Article  CAS  PubMed  Google Scholar 

  33. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297(5583):967–973

    Article  CAS  PubMed  Google Scholar 

  34. Penczek S, Pretula J, Lewinski P (2017) Dormant polymers and their role in living and controlled polymerizations; influence on polymer chemistry, particularly on the ring opening polymerization. Polymers (Basel) 9(12):–E646

    Google Scholar 

  35. Ratcliffe LPD, Bentley KJ, Wehr R, Warren NJ, Saunders BR, Armes SP (2017) Cationic disulfide-functionalized worm gels. Polym Chem 8(38):5962–5971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moad G (2017) RAFT polymerization to form stimuli-responsive polymers. Polym Chem 8(1):177–219

    Article  CAS  Google Scholar 

  37. Palmiero UC, Sponchioni M, Manfredini N, Maraldi M, Moscatelli D (2018) Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polym Chem 9(30):4084–4099

    Article  Google Scholar 

  38. Dinu IA, Duskey JT, Car A, Palivan CG, Meier W (2016) Engineered non-toxic cationic nanocarriers with photo-triggered slow-release properties. Polym Chem 7(20):3451–3464

    Article  CAS  Google Scholar 

  39. Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990

    Article  CAS  PubMed  Google Scholar 

  40. Fantin M, Lorandi F, Gennaro A, Isse AA, Matyjaszewski K (2017) Electron transfer reactions in atom transfer radical polymerization. Synthesis 49(15):3311–3322

    Article  CAS  Google Scholar 

  41. Gaitzsch J, Welsch PC, Folini J, Schoenenberger CA, Anderson JC, Meier WP (2018) Revisiting monomer synthesis and radical ring opening polymerization of dimethylated MDO towards biodegradable nanoparticles for enzymes. Eur Polym J 101:113–119

    Article  CAS  Google Scholar 

  42. Konishcheva E, Daubian D, Gaitzsch J, Meier W (2018) Synthesis of linear ABC triblock copolymers and their self-assembly in solution. Helv Chim Acta 101(2):e1700287

    Article  CAS  Google Scholar 

  43. Bai LC, Tan L, Chen LJ, Liu ST, Wang YM (2014) Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J Mater Chem B 2(44):7785–7794

    Article  CAS  PubMed  Google Scholar 

  44. Zhang XY, Zhang PY (2017) Polymersomes in nanomedicine—a review. Curr Nanosci 13(2):124–129

    Article  CAS  Google Scholar 

  45. Konradi R, Pidhatika B, Muhlebach A, Textor M (2008) Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir 24(3):613–616

    Article  CAS  PubMed  Google Scholar 

  46. Atkins PW, de Paula J (2007) Physikalische Chemie. Oxford University Press, Oxford

    Google Scholar 

  47. Aoshima S, Kanaoka SA (2009) Renaissance in living cationic polymerization. Chem Rev 109(11):5245–5287

    Article  CAS  PubMed  Google Scholar 

  48. Najer A, Wu DL, Vasquez D, Palivan CG, Meier W (2013) Polymer nanocompartments in broad-spectrum medical applications. Nanomedicine 8(3):425–447

    Article  CAS  PubMed  Google Scholar 

  49. Lanzilotto A, Kyropoulou M, Constable EC, Housecroft CE, Meier WP, Palivan CG (2018) Porphyrin-polymer nanocompartments: singlet oxygen generation and antimicrobial activity. J Biol Inorg Chem 23(1):109–122

    Article  CAS  PubMed  Google Scholar 

  50. Palivan CG, Goers R, Najer A, Zhang XY, Car A, Meier W (2016) Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev 45(2):377–411

    Article  CAS  PubMed  Google Scholar 

  51. Onaca O, Enea R, Hughes DW, Meier W (2009) Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci 9(2):129–139

    Article  CAS  PubMed  Google Scholar 

  52. Nardin C, Widmer J, Winterhalter M, Meier W (2001) Amphiphilic block copolymer nanocontainers as bioreactors. Eur Phys J E 4(4):403–410

    Article  CAS  Google Scholar 

  53. Broz P, Benito SM, Saw C, Burger P, Heider H, Pfisterer M, Marsch S, Meier W, Hunziker P (2005) Cell targeting by a generic receptor-targeted polymer nanocontainer platform. J Control Release 102(2):475–488

    Article  CAS  PubMed  Google Scholar 

  54. Zhang C, Zhu YQ, Zhou CC, Yuan WZ, Du JZ (2013) Antibacterial vesicles by direct dissolution of a block copolymer in water. Polym Chem 4(2):255–259

    Article  CAS  Google Scholar 

  55. Wang MZ, Zhou CC, Chen J, Xiao YF, Du JZ (2015) Multifunctional biocompatible and biodegradable folic acid conjugated poly(epsilon-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjug Chem 26(4):725–734

    Article  CAS  PubMed  Google Scholar 

  56. Belluati A, Craciun I, Liu J, Palivan CG (2018) Nanoscale enzymatic compartments in tandem support cascade reactions in vitro. Biomacromolecules 19(10):4023–4033

    Article  CAS  PubMed  Google Scholar 

  57. Langowska K, Palivan CG, Meier W (2013) Polymer nanoreactors shown to produce and release antibiotics locally. Chem Commun 49(2):128–130

    Article  CAS  Google Scholar 

  58. Wick WE (1967) Cephalexin a new orally absorbed cephalosporin antibiotic. Appl Microbiol 15(4):765–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spratt BG (1975) Distinct penicillin binding-proteins involved in division, elongation, and shape of Escherichia coli-K12. Proc Natl Acad Sci U S A 72(8):2999–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wayakanon K, Thornhill MH, Douglas CWI, Lewis AL, Warren NJ, Pinnock A, Armes SP, Battaglia G, Murdoch C (2013) Polymersome-mediated intracellular delivery of antibiotics to treat Porphyromonas gingivalis-infected oral epithelial cells. FASEB J 27(11):4455–4465

    Article  CAS  PubMed  Google Scholar 

  61. Rizzello L, Robertson JD, Elks PM, Poma A, Daneshpour N, Prajsnar TK, Evangelopoulos D, Ortiz Canseco J, Yona S, Marriott HM, Dockrell DH, Foster S, De Geest B, De Koker S, McHugh T, Renshaw SA, Battaglia G (2017) Targeting mononuclear phagocytes for eradicating intracellular parasites. bioRxiv. p 119297

    Google Scholar 

  62. Lane DD, Su FY, Chiu DY, Srinivasan S, Wilson JT, Ratner DM, Stayton PS, Convertine AJ (2015) Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes. Polym Chem 6(8):1255–1266

    Article  CAS  PubMed  Google Scholar 

  63. Hong YX, Xi YJ, Zhang JX, Wang DD, Zhang HL, Yan N, He SS, Du JZ (2018) Polymersome-hydrogel composites with combined quick and long-term antibacterial activities. J Mater Chem B 6(39):6311–6321

    Article  CAS  PubMed  Google Scholar 

  64. Kurtjak M, Aničić N, Vukomanovicć M (2017) Inorganic nanoparticles: innovative tools for antimicrobial agents in antibacterial agents. IntechOpen, Rijeka, pp 39–60

    Google Scholar 

  65. Lu H, Fan L, Liu QM, Wei JR, Ren TB, Du JZ (2012) Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym Chem 3(8):2217–2227

    Article  CAS  Google Scholar 

  66. Geilich BM, van de Ven AL, Singleton GL, Sepulveda LJ, Sridhar S, Webster TJ (2015) Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections. Nanoscale 7(8):3511–3519

    Article  CAS  PubMed  Google Scholar 

  67. Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ (2017) Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials 119:78–85

    Article  CAS  PubMed  Google Scholar 

  68. Haas S, Hain N, Raoufi M, Handschuh-Wang S, Wang T, Jiang X, Schonherr H (2015) Enzyme degradable polymersomes from hyaluronic acid-block-poly(epsilon-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromolecules 16(3):832–841

    Article  CAS  PubMed  Google Scholar 

  69. Grzelakowski M, Onaca O, Rigler P, Kumar M, Meier W (2009) Immobilized protein-polymer nanoreactors. Small 5(22):2545–2548

    Article  CAS  PubMed  Google Scholar 

  70. Berthaud A, Quemeneur F, Deforet M, Bassereau P, Brochard-Wyart F, Mangenot S (2016) Spreading of porous vesicles subjected to osmotic shocks: the role of aquaporins. Soft Matter 12(5):1601–1609

    Article  CAS  PubMed  Google Scholar 

  71. De Vries WC, Tesch M, Studer A, Ravoo BJ (2017) Molecular recognition and immobilization of ligand-conjugated redox-responsive polymer nanocontainers. ACS Appl Mater Interfaces 9(48):41760–41766

    Article  CAS  PubMed  Google Scholar 

  72. Battaglia G, LoPresti C, Massignani M, Warren NJ, Madsen J, Forster S, Vasilev C, Hobbs JK, Armes SP, Chirasatitsin S, Engler AJ (2011) Wet nanoscale imaging and testing of polymersomes. Small 7(14):2010–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iyisan B, Janke A, Reichenbach P, Eng LM, Appelhans D, Voit B (2016) Immobilized multifunctional polymersomes on solid surfaces: infrared light-induced selective photochemical reactions, PH responsive behavior, and probing mechanical properties under liquid phase. ACS Appl Mater Interface 8(24):15788–15801

    Article  CAS  Google Scholar 

  74. Li F, Ketelaar T, Stuart MAC, Sudholter EJR, Leermakers FAM, Marcelis ATM (2008) Gentle immobilization of nonionic polymersomes on solid substrates. Langmuir 24(1):76–82

    Article  CAS  PubMed  Google Scholar 

  75. Chen Q, de Groot GW, Schonherr H, Vancso GJ (2011) Patterns of surface immobilized block copolymer vesicle nanoreactors. Eur Polym J 47(2):130–138

    Article  CAS  Google Scholar 

  76. Choi JM, Yoon B, Choi K, Seol ML, Kim JM, Choi YK (2012) Micropatterning polydiacetylene supramolecular vesicles on glass substrates using a pre-patterned hydrophobic thin film. Macromol Chem Phys 213(6):610–616

    Article  CAS  Google Scholar 

  77. Domes S, Filiz V, Nitsche J, Fromsdorf A, Forster S (2010) Covalent attachment of polymersomes to surfaces. Langmuir 26(10):6927–6931

    Article  CAS  PubMed  Google Scholar 

  78. Langowska K, Kowal J, Palivan CG, Meier W (2014) A general strategy for creating self-defending surfaces for controlled drug production for long periods of time. J Mater Chem B 2(29):4684–4693

    Article  CAS  PubMed  Google Scholar 

  79. Gunkel-Grabole G, Palivan C, Meier W (2017) Nanostructured surfaces through immobilization of self-assembled polymer architectures using thiol-ene chemistry. Macromol Mater Eng 302(4)

    Google Scholar 

  80. Rein C, Nissen S, Grzelakowski M, Meldal M (2016) Click-chemistry of polymersomes on nanoporous polymeric surfaces. J Polym Sci Pt A Polym Chem 54(13):2032–2039

    Article  CAS  Google Scholar 

  81. Lutz JF (2008) Copper-free azide-alkyne cycloadditions: new insights and perspectives. Angew Chem Int Ed 47(12):2182–2184

    Article  CAS  Google Scholar 

  82. Agard NJ, Prescher JA, Bertozzi CR (2005) A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems (vol 126, pg 15046, 2004). J Am Chem Soc 127(31):11196–11196

    Article  CAS  Google Scholar 

  83. Rigo S, Gunkel-Grabole G, Meier W, Palivan CG (2019) Surfaces with dual functionality through specific coimmobilization of self-assembled polymeric nanostructures. Langmuir 35(13):4557–4565

    Article  CAS  PubMed  Google Scholar 

  84. Mahajan N, Lu RB, Wu ST, Fang JY (2005) Patterning polymerized lipid vesicles with soft lithography. Langmuir 21(7):3132–3135

    Article  CAS  PubMed  Google Scholar 

  85. Qin D, Xia YN, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502

    Article  CAS  PubMed  Google Scholar 

  86. Xin ZQ, Liu Y, Li X, Liu SL, Fang Y, Deng YQ, Bao C, Li LH (2017) Conductive grid patterns prepared by microcontact printing silver nanoparticles ink. Mater Res Express 4(1)

    Google Scholar 

  87. Craciun I, Denes AS, Gunkel-Grabole G, Belluati A, Palivan CG (2018) Surfaces decorated with polymeric nanocompartments for pH reporting. Helv Chim Acta 101(3)

    Google Scholar 

  88. Zhang XY, Lomora M, Einfalt T, Meier W, Klein N, Schneider D, Palivan CG (2016) Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols. Biomaterials 89:79–88

    Article  CAS  PubMed  Google Scholar 

  89. Fang B, Jiang Y, Nusslein K, Rotello VM, Santore MM (2015) Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. Colloids Surf B Biointerfaces 125:255–263

    Article  CAS  PubMed  Google Scholar 

  90. Taheri S, Baier G, Majewski P, Barton M, Forch R, Landfester K, Vasilev K (2014) Synthesis and surface immobilization of antibacterial hybrid silver-poly(l-lactide) nanoparticles. Nanotechnology 25(30)

    Google Scholar 

  91. Ali SM, Siddiqui R, Khan NA (2018) Antimicrobial discovery from natural and unusual sources. J Pharm Pharmacol 70(10):1287–1300

    Article  CAS  PubMed  Google Scholar 

  92. Fry DE (2018) Antimicrobial peptides. Surg Infect (Larchmt) 19(8):804–811

    Article  Google Scholar 

  93. Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SAJ (2017) Antimicrobial peptides in biomedical device manufacturing. Front Chem 5:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Riool M, de Breij A, de Boer L, Kwakman PHS, Cordfunke RA, Cohen O, Malanovic N, Emanuel N, Lohner K, Drijfhout JW, Nibbering PH, Zaat SAJ (2017) Controlled release of LL-37-derived synthetic antimicrobial and anti-biofilm peptides SAAP-145 and SAAP-276 prevents experimental biomaterial-associated Staphylococcus aureus infection. Adv Funct Mater 27(20):1606623

    Article  CAS  Google Scholar 

  95. Ribeiro KL, Frias IAM, Franco OL, Dias SC, Sousa-Junior AA, Silva ON, Bakuzis AF, Oliveira MDL, Andrade CAS (2018) Clavanin A-bioconjugated Fe3O4/Silane core-shell nanoparticles for thermal ablation of bacterial biofilms. Colloids Surf B Biointerfaces 169:72–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the generous financial support from the SNSF, NCCR-MSE, and the University of Basel.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cora-Ann Schoenenberger or Cornelia G. Palivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rigo, S., Kyropoulou, M., Schoenenberger, CA., Palivan, C.G. (2020). Battling Bacteria with Free and Surface-Immobilized Polymeric Nanostructures. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_17

Download citation

Publish with us

Policies and ethics