Skip to main content

Enabling Learning Experiences for Visually Impaired Children by Interaction Design

  • Chapter
  • First Online:

Abstract

Interaction design and tangible computing offer rich opportunities for supporting children with impairments by means of enhanced therapeutic toys and educational materials. In order to explore how technology can be utilized to meet special requirements in the education of visually impaired children (and teenagers), we set up a practice-based research project at a special health center and school for the blind. Drawing on a number of design experiments involving educators and affected children, we came up with design proposals that enabled instructive (sensory) experiences despite their impairments in the sensory system. We describe two interactive prototypes in detail – a tangible color-picker toy, that we named The Cuebe, and an Audio-Tactile Map designed for e-learning – and show how they can support children in building new skills by augmenting physical properties and affordances. In both prototypes, tactility, haptics, and interactivity were crucial features, since all experiences originated at the fingertips and then unfolded higher-level sensory and cognitive processes. Moreover, the prototypes were also characterized by a high degree of open-endedness and customizability in their design, allowing educators to incorporate them in flexible ways to meet the needs of the children.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.bbi.at/ – last accessed 27 Mar 2019.

  2. 2.

    http://www.contrast.or.at – last accessed 27 Mar 2019.

  3. 3.

    That is, while a healthy subject can read a letter from 60 m distance, the visually impaired person can only do so from 3 m.

  4. 4.

    The names of the children were altered for anonymity.

  5. 5.

    A detailed description of the prototype can be found in a separate publication [62].

References

  1. Albouys-Perrois, J., Laviole, J., Briant, C., Brock, A.M.: Towards a multisensory augmented reality map for blind and low vision people: A participatory design approach. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. pp. 629:1–629:14. CHI ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3173574.3174203

  2. Antle, A.N., Fan, M., Cramer, E.S.: Phonoblocks: A tangible system for supporting dyslexic children learning to read. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 533–538. TEI ’15, ACM, New York, NY, USA (2015), https://doi.org/10.1145/2677199.2687897

  3. Asaro, P.M.: Transforming society by transforming technology: the science and politics of participatory design. Accounting, Management and Information Technologies 10(4), 257–290 (2000), http://www.sciencedirect.com/science/article/B6VFY-40X8FS2-1/2/ac8ff34bf4812794b471d535068bea6a

    Article  Google Scholar 

  4. Austrian Federal Ministry of Education, Science and Research: Curriculum for Blind School Children – Lehrplan der Sonderschule für blinde Kinder. Report, Austrian Government (2008), https://www.cisonline.at/fileadmin/kategorien/BGBl_II__Nr_137_Anlage_C_3.pdf

  5. Bannon, L.: Reimagining HCI: Toward a More Human-centered Perspective. Interactions 18(4), 50–57 (Jul 2011), https://doi.org/10.1145/1978822.1978833

    Article  Google Scholar 

  6. Banzi, M., Cuartielles, D.: Arduino. Open-source Electronics Platform [Cross-platform] (2005), https://www.arduino.cc/. Accessed 27 March 2019.

  7. Bourne, R.R.A., Flaxman, S.R., Braithwaite, T., Cicinelli, M.V., Das, A., Jonas, J.B., Keeffe, J., Kempen, J.H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Resnikoff, S., Silvester, A., Stevens, G.A., Tahhan, N., Wong, T.Y., Taylor, H.R.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. The Lancet Global Health 5(9), e888–e897 (2017), https://doi.org/10.1016/S2214-109X(17)30293-0

    Article  Google Scholar 

  8. Bowers, J.: The logic of annotated portfolios: Communicating the value of ‘research through design’. In: Proceedings of the Designing Interactive Systems Conference. pp. 68–77. DIS ’12, ACM, New York, NY, USA (2012), https://doi.org/10.1145/2317956.2317968

  9. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research in Psychology 3(2), 77–101 (2006), http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

    Article  Google Scholar 

  10. Bunce, C., Wormald, R.: Leading causes of certification for blindness and partial sight in England & Wales. BMC Public Health 6, 58–58 (2006), https://www.ncbi.nlm.nih.gov/pubmed/16524463 https://www.ncbi.nlm.nih.gov/pmc/PMC1420283/, 16524463[pmid] PMC1420283[pmcid] 1471-2458-6-58[PII] BMC Public Health

  11. Cook, A.M., Hussey, S.: Assistive Technologies: Principles and Practice (2nd Edition). Mosby, 2 edn. (Dec 2001), http://www.worldcat.org/isbn/0323006434

  12. Dahlbäck, N., Jönsson, A., Ahrenberg, L.: Wizard of Oz studies – why and how. Knowledge-Based Systems 6(4), 258–266 (1993), http://www.sciencedirect.com/science/article/pii/095070519390017N, Special Issue: Intelligent User Interfaces

  13. Dorst, C.: Describing Design – A comparison of paradigms. TU Delft, Delft, Netherlands (1997)

    Google Scholar 

  14. Ducasse, J., Brock, A.M., Jouffrais, C.: Accessible interactive maps for visually impaired users. In: Pissaloux, E., Velazquez, R. (eds.) Mobility of Visually Impaired People: Fundamentals and ICT Assistive Technologies, pp. 537–584. Springer International Publishing, Cham (2018), https://doi.org/10.1007/978-3-319-54446-5_17

    Chapter  Google Scholar 

  15. Fallman, D.: Design-oriented human-computer interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 225–232. CHI ’03, ACM, New York, NY, USA (2003), https://doi.org/10.1145/642611.642652

  16. Fikar, P., Güldenpfennig, F., Ganhör, R.: Pick, place, and follow: A ball run for visually impaired children. In: Proceedings of the 2018 ACM Conference Companion Publication on Designing Interactive Systems. pp. 165–169. DIS ’18 Companion, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3197391.3205430

  17. Fikar, P., Güldenpfennig, F., Ganhör, R.: The Cuebe: Facilitating Playful Early Intervention for the Visually Impaired. In: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 35–41. TEI ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3173225.3173263

  18. Fikar, P., Güldenpfennig, F., Ganhör, R.: The use(fulness) of therapeutic toys: Practice-derived design lenses for toy design. In: Proceedings of the 2018 Designing Interactive Systems Conference. pp. 289–300. DIS ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3196709.3196721

  19. Flaxman, S.R., Bourne, R.R.A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M.V., Das, A., Jonas, J.B., Keeffe, J., Kempen, J.H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G.A., Tahhan, N., Wong, T.Y., Taylor, H.R.: Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. The Lancet Global Health 5(12), e1221–e1234 (2017), https://doi.org/10.1016/S2214-109X(17)30393-5

    Article  Google Scholar 

  20. Floyd, C.: A systematic look at prototyping. In: Budde, R., Kuhlenkamp, K., Mathiassen, L., Züllinghoven, H. (eds.) Approaches to Prototyping, pp. 1–18. Springer, Berlin, Heidelberg (1984)

    Google Scholar 

  21. Garzotto, F., Gonella, R.: An open-ended tangible environment for disabled children’s learning. In: Proceedings of the 10th International Conference on Interaction Design and Children. pp. 52–61. IDC ’11, ACM, New York, NY, USA (2011), https://doi.org/10.1145/1999030.1999037

  22. Gaver, W.: What should we expect from research through design? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 937–946. CHI ’12, ACM, New York, NY, USA (2012), https://doi.org/10.1145/2207676.2208538

  23. Güldenpfennig, F., Fikar, P., Ganhör, R.: Designing interactive and motivating stimuli for children with visual impairments. In: Proceedings of the 31st British Computer Society Human Computer Interaction Conference. pp. 64:1–64:4. HCI ’17, BCS Learning & Development Ltd., Swindon, UK (2017), https://doi.org/10.14236/ewic/HCI2017.64

  24. Güldenpfennig, F., Fikar, P., Ganhör, R.: Interactive and open-ended sensory toys: Designing with therapists and children for tangible and visual interaction. In: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 451–459. TEI ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3173225.3173247

  25. Guralnick, M.J.: The System of Early Intervention for Children with Developmental Disabilities. In: Jacobson, J.W., Mulick, J.A., Rojahn, J. (eds.) Handbook of Intellectual and Developmental Disabilities, pp. 465–480. Springer US, Boston, MA (2007), https://doi.org/10.1007/0-387-32931-5_24

    Chapter  Google Scholar 

  26. Harrison, S., Sengers, P., Tatar, D.: Three paradigms in HCI. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’07, ACM, New York, NY, USA (2007)

    Google Scholar 

  27. Hengeveld, B., Frens, J., Deckers, E.: Artefact matters. The Design Journal 19(2), 323–337 (2016), https://doi.org/10.1080/14606925.2016.1129175

    Article  Google Scholar 

  28. Höök, K., Löwgren, J.: Strong Concepts: Intermediate-level Knowledge in Interaction Design Research. ACM Trans. Comput.-Hum. Interact. 19(3), 23:1–23:18 (Oct 2012), https://doi.org/10.1145/2362364.2362371

    Article  Google Scholar 

  29. Hornecker, E., Buur, J.: Getting a grip on tangible interaction: A framework on physical space and social interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 437–446. CHI ’06, ACM, New York, NY, USA (2006), https://doi.org/10.1145/1124772.1124838

  30. Jadan-Guerrero, J., Jaen, J., Carpio, M.A., Guerrero, L.A.: Kiteracy: A kit of tangible objects to strengthen literacy skills in children with down syndrome. In: Proceedings of the 14th International Conference on Interaction Design and Children. pp. 315–318. IDC ’15, ACM, New York, NY, USA (2015), https://doi.org/10.1145/2771839.2771905

  31. Jarvis, N., Cameron, D., Boucher, A.: Attention to detail: Annotations of a design process. In: Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design. pp. 11–20. NordiCHI ’12, ACM, New York, NY, USA (2012), https://doi.org/10.1145/2399016.2399019

  32. Joost, G., Bredies, K., Christensen, M., Conradi, F., Unteidig, A.: Design as Research. Birkhäuser De Gruyter, Basel, Switzerland (2016)

    Book  Google Scholar 

  33. Kane, S.K., Hurst, A., Buehler, E., Carrington, P.A., Williams, M.A.: Collaboratively Designing Assistive Technology. Interactions 21(2), 78–81 (Mar 2014), https://doi.org/10.1145/2566462

    Google Scholar 

  34. Korsgaard, H., Klokmose, C.N., Bødker, S.: Computational alternatives in participatory design: Putting the T back in socio-technical research. In: Bossen, C., Smith, R.C., Kanstrup, A.M., McDonnell, J., Teli, M., Bødker, K. (eds.) Proceedings of the 14th Participatory Design Conference: Full Papers – Volume 1. vol. 1, pp. 71–79. ACM, New York, NY, USA (2016)

    Chapter  Google Scholar 

  35. Koskinen, I., Zimmerman, J., Binder, T., Redström, J., Wensveen, S.: Design Research Through Practice: From the Lab, Field, and Showroom. Morgan Kaufmann (2011)

    Google Scholar 

  36. Koskinen, I., Frens, J.: Research prototypes. Archives of Design Research 30(3), 17–26 (8 2017)

    Article  Google Scholar 

  37. L. Riemer-Reiss, M., Wacker, R.: Factors associated with assistive technology discontinuance among individuals with disabilities. Journal of Rehabilitation 66(3), 44–50 (07 2000)

    Google Scholar 

  38. Linehan, C., Waddington, J., Hodgson, T.L., Hicks, K., Banks, R.: Designing Games for the Rehabilitation of Functional Vision for Children with Cerebral Visual Impairment. In: CHI ’14 Extended Abstracts on Human Factors in Computing Systems. pp. 1207–1212. CHI EA ’14, ACM, New York, NY, USA (2014), https://doi.org/10.1145/2559206.2581219

  39. Majnemer, A.: Benefits of Early Intervention for children with developmental disabilities. Seminars in Pediatric Neurology 5(1), 62–69 (1998), http://www.sciencedirect.com/science/article/pii/S107190919880020X, topics in Developmental Delay

    Article  Google Scholar 

  40. Martin, B., McCormack, L.: Issues surrounding Assistive Technology use and abandonment in an emerging technological culture. In: in Proceedings of Association for the Advancement of Assistive Technology in Europe (AAATE) Conference. pp. 413–417. IOS Press, Düsseldorf, Germany (1999)

    Google Scholar 

  41. Martin, M.B.C., Santos-Lozano, A., Martin-Hernandez, J., Lopez-Miguel, A., Maldonado, M., Baladron, C., Bauer, C.M., Merabet, L.B.: Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity. Frontiers in Psychology 7, 1958 (2016), https://www.frontiersin.org/article/10.3389/fpsyg.2016.01958

    Google Scholar 

  42. Metatla, O., Cullen, C.: “Bursting the Assistance Bubble”: Designing Inclusive Technology with Children with Mixed Visual Abilities. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. pp. 346:1–346:14. CHI ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3173574.3173920

  43. Metatla, O., Thieme, A., Brulé, E., Bennett, C., Serrano, M., Jouffrais, C.: Toward classroom experiences inclusive of students with disabilities. Interactions 26(1), 40–45 (Dec 2018), https://doi.org/10.1145/3289485

    Article  Google Scholar 

  44. Moraiti, A., Vanden Abeele, V., Vanroye, E., Geurts, L.: Empowering Occupational Therapists with a DIY-toolkit for Smart Soft Objects. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 387–394. TEI ’15, ACM, New York, NY, USA (2015), https://doi.org/10.1145/2677199.2680598

  45. Parkes, D.: Nomad: an audio-tactile tool for the acquisition, use and management of spatially distributed information by visually impaired people. In: Tatham, A.F., Dodds, A.G. (eds.) Proceedings of the second International Conference on Maps and Graphics for Visually Impaired People, pp. 24–29. International Cartographic Association Commission VII (Tactile and Low Vision Mapping) and Royal National Institute for the Blind, London, UK (1988)

    Google Scholar 

  46. Phillips, B., Zhao, H.: Predictors of Assistive Technology Abandonment. Assistive Technology 5(1), 36–45 (1993), https://doi.org/10.1080/10400435.1993.10132205, pMID: 10171664

    Article  Google Scholar 

  47. Pierce, J.: On the Presentation and Production of Design Research Artifacts in HCI. In: Proceedings of the 2014 Conference on Designing Interactive Systems. pp. 735–744. DIS ’14, ACM, New York, NY, USA (2014), https://doi.org/10.1145/2598510.2598525

  48. Reitberger, W., Güldenpfennig, F., Fitzpatrick, G.: Persuasive Technology Considered Harmful? An Exploration of Design Concerns Through the TV Companion. In: Proceedings of the 7th International Conference on Persuasive Technology: Design for Health and Safety. pp. 239–250. PERSUASIVE’12, Springer-Verlag, Berlin, Heidelberg (2012), https://doi.org/10.1007/978-3-642-31037-9_21

    Chapter  Google Scholar 

  49. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy Sciences 4(2), 155–169 (1973), https://doi.org/10.1007/BF01405730

    Article  Google Scholar 

  50. Rosenberg, S.A., Zhang, D., Robinson, C.C.: Prevalence of Developmental Delays and Participation in Early Intervention Services for Young Children. Pediatrics 121(6), e1503–e1509 (2008), https://pediatrics.aappublications.org/content/121/6/e1503

    Article  Google Scholar 

  51. Sanchez, J., Tadres, A., Pascual-Leone, A., Merabet, L.: Blind children navigation through gaming and associated brain plasticity. In: 2009 Virtual Rehabilitation International Conference. pp. 29–36 (June 2009)

    Google Scholar 

  52. Sanders, E.B.N., Stappers, P.J.: Co-creation and the new landscapes of design. CoDesign 4(1), 5–18 (2008), https://doi.org/10.1080/15710880701875068

    Article  Google Scholar 

  53. Schön, Donald A.: The reflective practitioner: how professionals think in action. Temple Smith, London (1983)

    Google Scholar 

  54. Seisenbacher, G., Mayer, P., Panek, P., Zagler, W.: 3D-Finger – System for Auditory Support of Haptic Exploration in the Education of Blind and Visually Impaired Students – Idea and Feasibility Study. In: Assistive Technology: From Virtuality to Reality. pp. 73–77. IOS Press, Amsterdam (09 2005)

    Google Scholar 

  55. Sonne, T., Jensen, M.M.: Chillfish: A respiration game for children with ADHD. In: Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 271–278. TEI ’16, ACM, New York, NY, USA (2016), https://doi.org/10.1145/2839462.2839480

  56. Stolterman, E.: The nature of design practice and implications for interaction design research. International Journal of Design 2(1), 55–65 (2008), http://www.ijdesign.org/ojs/index.php/IJDesign/article/view/240

    Google Scholar 

  57. Tam, V., Gelsomini, M., Garzotto, F.: Polipo: A tangible toy for children with neurodevelopmental disorders. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction. pp. 11–20. TEI ’17, ACM, New York, NY, USA (2017), https://doi.org/10.1145/3024969.3025006

  58. Thieme, A., Morrison, C., Villar, N., Grayson, M., Lindley, S.: Enabling collaboration in learning computer programing inclusive of children with vision impairments. In: Proceedings of the 2017 Conference on Designing Interactive Systems. pp. 739–752. DIS ’17, ACM, New York, NY, USA (2017), https://doi.org/10.1145/3064663.3064689

  59. Verhaegh, J., Fontijn, W., Hoonhout, J.: Tagtiles: Optimal challenge in educational electronics. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction. pp. 187–190. TEI ’07, ACM, New York, NY, USA (2007), https://doi.org/10.1145/1226969.1227008

  60. Waddington, J., Linehan, C., Gerling, K., Hicks, K., Hodgson, T.L.: Participatory design of therapeutic video games for young people with neurological vision impairment. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. pp. 3533–3542. CHI ’15, ACM, New York, NY, USA (2015), https://doi.org/10.1145/2702123.2702261

  61. Wagner, A.: Collaboratively generated content on the audio-tactile map. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) Computers Helping People with Special Needs. pp. 78–80. Springer Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  62. Wagner, A., Kaindl, G.: WireTouch: An Open Multi-Touch Tracker based on Mutual Capacitance Sensing (September 2016), {https://doi.org/10.5281/zenodo.61461}

  63. Wensveen, S., Matthews, B.: Prototypes and prototyping in design research. In: Rodgers, P.A., Yee, J. (eds.) The Routledge Companion to Design Research. pp. 262–276. Routledge (2014), https://www.routledgehandbooks.com/doi/10.4324/9781315758466.ch21

  64. Zimmerman, J., Forlizzi, J.: The role of design artifacts in design theory construction. Artifact 2(1), 41–45 (2008), https://doi.org/10.1080/17493460802276893

    Article  Google Scholar 

  65. Zimmerman, J., Forlizzi, J., Evenson, S.: Research Through Design As a Method for Interaction Design Research in HCI. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 493–502. CHI ’07, ACM, New York, NY, USA (2007), https://doi.org/10.1145/1240624.1240704

Download references

Acknowledgements

This research has been funded by “Gemeinsame Gesundheitsziele aus dem Rahmen-Pharmavertrag, eine Kooperation von österreichischer Pharmawirtschaft und Sozialversicherung” and by the Sparkling Science program, led by the Austrian Federal Ministry of Science and Research. The authors also thank all involved participants – the preschool children, their Early Intervention therapists, the students, and their teachers as well as the Institute “Integrated Study” for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Güldenpfennig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Güldenpfennig, F., Wagner, A., Fikar, P., Kaindl, G., Ganhör, R. (2020). Enabling Learning Experiences for Visually Impaired Children by Interaction Design. In: McDaniel, T., Panchanathan, S. (eds) Haptic Interfaces for Accessibility, Health, and Enhanced Quality of Life. Springer, Cham. https://doi.org/10.1007/978-3-030-34230-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34230-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34229-6

  • Online ISBN: 978-3-030-34230-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics