Skip to main content

Entrack: A Data-Driven Maximum-Entropy Approach to Fiber Tractography

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11824))

Included in the following conference series:

Abstract

The combined effort of brain anatomy experts and computerized methods has continuously improved the quality of available gold-standard tractograms for diffusion-weighted MRI. These prototypical tractograms contain information that can be utilized by other brain mapping applications. However, this transfer requires data-driven tractography algorithms, which learn from example tractograms, to deliver the obtained knowledge to other diffusion-weighted MRI data. The value of these data-driven methods would be greatly enhanced, if they could also estimate and control the uncertainty of their predictions. These reasons lead us to propose a generic machine learning method for probabilistic tractography. We demonstrate the general approach with a basic Fisher-von-Mises distribution to model local fiber direction. The distributional parameters are inferred from diffusion data by a neural network. For training the neural network, we derive an analytic, entropy-regularized cost function, which allows to control model uncertainty in accordance with the level of noise in the data. We highlight the ability of our method to quantify the probability of a given fiber, which makes it a useful tool for outlier detection. The tracking performance of the model is evaluated on the ISMRM 2015 Tractography Challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code available at https://github.com/vwegmayr/entrack.

References

  1. Aganj, I., et al.: A hough transform global probabilistic approach to multiple-subject diffusion MRI tractography. Med. Image Anal. 15(4), 414–425 (2011). https://doi.org/10.1016/j.media.2011.01.003

    Article  Google Scholar 

  2. Beaulieu, C.: The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 15(7–8), 435–455 (2002)

    Article  Google Scholar 

  3. Behrens, T.E.J., et al.: Probabilistic diffusion tractography with multiple fiber orientations: what can we gain? NeuroImage 34(1), 144–155 (2007). https://doi.org/10.1016/j.neuroimage.2006.09.018

    Article  Google Scholar 

  4. Bihan, D.L., Iima, M.: Diffusion magnetic resonance imaging: what water tells us about biological tissues. In: PLoS Biology (2015)

    Google Scholar 

  5. Bingham, C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 2(6), 1201–1225 (1974). https://doi.org/10.1214/aos/1176342874

    Article  MathSciNet  MATH  Google Scholar 

  6. Côté, M.A., et al.: Tractometer: towards validation of tractography pipelines. Med. Image Anal. 17(7), 844–857 (2013). http://www.tractometer.org/ismrm_2015_challenge/evaluation

  7. Fan, Q., et al.: MGH-USC human connectome project datasets with ultra-high b-value diffusion MRI. NeuroImage 124, 1108–1114 (2016)

    Article  Google Scholar 

  8. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957). https://doi.org/10.1103/PhysRev.106.620

    Article  MathSciNet  MATH  Google Scholar 

  9. Johansen-Berg, H., et al.: Just pretty pictures? what diffusion tractography can add in clinical neuroscience. Curr. Opin. Neurol. 19, 379–385 (2006)

    Article  Google Scholar 

  10. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS (2017)

    Google Scholar 

  11. Murphy, K.P.: Machine learning - a probabilistic perspective. In: Adaptive Computation and Machine Learning Series (2012)

    Google Scholar 

  12. Neher, P.F., et al.: Fiberfox: facilitating the creation of realistic white matter software phantoms. Magn. Reson. Med. 72(5), 1460–1470 (2014). https://doi.org/10.1002/mrm.25045

    Article  Google Scholar 

  13. Neher, P.F., et al.: Fiber tractography using machine learning. NeuroImage 158, 417–429 (2017)

    Article  Google Scholar 

  14. Nimsky, C., Bauer, M., Carl, B.: Merits and limits of tractography techniques for the uninitiated. In: Schramm, J. (ed.) Advances and Technical Standards in Neurosurgery. ATSN, vol. 43, pp. 37–60. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21359-0_2

    Chapter  Google Scholar 

  15. Poulin, P., et al.: Learn to track: deep learning for tractography. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 540–547. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_62

    Chapter  Google Scholar 

  16. Poupon, C., et al.: A diffusion hardware phantom looking like a coronal brain slice. In: Proceedings of the International Society for Magnetic Resonance in Medicine (2010)

    Google Scholar 

  17. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential Deep Learning to Quantify Classification Uncertainty, pp. 3179–3189 (2018)

    Google Scholar 

  18. Straub, J.: Bayesian inference with the von-Mises-fisher distribution in 3D (2017). http://people.csail.mit.edu/jstraub/download/straub2017vonMisesFisherInference.pdf. Accessed 09 Feb 2018

  19. Tikochinsky, Y., Tishby, N.Z., Levine, R.D.: Alternative approach to maximum-entropy inference. Phys. Rev. A 30, 2638–2644 (1984)

    Article  Google Scholar 

  20. Tournier, J.D., et al.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007)

    Article  Google Scholar 

  21. Tournier, J.D., et al.: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) (2010)

    Google Scholar 

  22. Tournier, J.D., et al.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. (2012). http://www.mrtrix.org/

  23. Wasserthal, J., et al.: Direct White Matter Bundle Segmentation using Stacked U-Nets. CoRR (2017)

    Google Scholar 

  24. Wegmayr, V.: Data-driven fiber tractography with neural networks. In: ISBI (2018)

    Google Scholar 

  25. Yamada, K., Sakai, K., Akazawa, K., Yuen, S., Nishimura, T.: MR tractography: a review of its clinical applications. Magn. Reson. Med. Sci. 8(4), 165–174 (2009). MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Wegmayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wegmayr, V., Giuliari, G., Buhmann, J.M. (2019). Entrack: A Data-Driven Maximum-Entropy Approach to Fiber Tractography. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics