Skip to main content

Nonlinear RISE-Based Control for a Gravity Balanced Exoskeleton: Evaluation of the Design and Control Principle

  • Conference paper
  • First Online:
Advanced Technologies in Robotics and Intelligent Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 80))

  • 802 Accesses

Abstract

In this paper we present a new control approach called RISE (Robust Integral of the Sign of Error) to control a three DOF exoskeleton designed at the Lebanese University for the assistance and rehabilitation of the human lower limb. The main purposes of this work are: (1) testing this novel control approach called RISE, (2) testing the gravity balancing design and show its advantages, in simplifying the control system and enhancing its performance. The extension and flexion of the knee joint in a seated position is considered as a case study in three different contexts: a passive rehabilitation, an assistance as needed and a resistive rehabilitation. The human torque acting on the robot is taken into consideration through a sequence of realistic torque generated values. We have shown that the RISE controller ensures a good convergence of the trajectory. By comparing a gravity balanced and unbalanced design, we have proven that the control torque is significantly reduced by the gravity balancing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kazerooni, H., Steger, R.: The Berkeley lower extremity exoskeleton. J. Dyn. Syst. Meas. Contr. 128(1), 14–25 (2006)

    Article  Google Scholar 

  2. Garcia, E., Sater, J.M., Main, J.: Exoskeletons for human performance augmentation (EHPA): a program summary. J. Robot. Soc. Jpn. 20(8), 822–826 (2002)

    Article  Google Scholar 

  3. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, Hoboken, New Jersey, USA (2009)

    Google Scholar 

  4. Kawamoto, H., Lee, S., Kanbe, S., Sankai, Y.: Power assist method for HAL-3 using EMG-based feedback controller. In: 2003 IEEE International Conference on Systems, Man and Cybernetics (SMC’03), pp. 1648–1653. IEEE, Washington, DC, USA (2003)

    Google Scholar 

  5. Fleischer, C., Hummel, G.: Embedded control system for a powered leg exoskeleton. In: Proceedings of the 7th International Workshop held at Technische Universität Berlin, pp. 177–186. Springer, Dordrecht (2006)

    Google Scholar 

  6. Fleischer, C., Wege, A., Kondak. K., Hommel, G.: Application of EMG signals for controlling exoskeleton robots. Biomedizinische Technik 51(5–6), 314–319 (2006)

    Google Scholar 

  7. Wang, Y., Makeig, S.: Predicting intended movement direction using EEG from human posterior parietal cortex. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds). Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. FAC 2009. LNCS, vol. 5638, pp. 437–446. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  8. Xian, B., Dawson, D.M., de Queiroz, M., Chen, J.: A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans. Autom. Control 49(7), 1206–1211 (2004)

    Article  MathSciNet  Google Scholar 

  9. Fischer, N., Hughes, D., Walters, P., Schwartz, E.M., Dixon, W.E.: Nonlinear RISE-based control of an autonomous underwater vehicle. IEEE Trans. Rob. 30(4), 845–852 (2014)

    Article  Google Scholar 

  10. Patre, P.M., MacKunis, W., Kaiser, K., Dixon, W.E.: Asymptotic tracking for uncertain dynamic systems via a multilayer neural network feedforward and RISE feedback control structure. IEEE Trans. Autom. Control 53(9), 2180–2185 (2008)

    Article  MathSciNet  Google Scholar 

  11. Rizk, R.: Wearable gravity balanced orthosis for lower limb with a special transmission mechanism. Mech. Mach. Sci. 73, 1545–1555 (2019)

    Article  Google Scholar 

  12. Rizk, R., Krut, S., Dombre, E.: Design of a 3D gravity balanced orthosis for upper limb. In: 2008 IEEE International Conference on Robotics and Automation, pp. 2447–2452. IEEE, Pasadena, CA, USA (2008)

    Google Scholar 

  13. Guenzkofer, F., Engstler, F., Bubb, H., Bengler, K.: Joint torque modeling of knee extension and flexion. In: Duffy, V.G. (eds.) Digital Human Modeling. ICDHM 2011. LNCS, vol. 6777, pp. 79–88. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  14. Swevers, J., Ganseman, C., Bilgin, D., De Schutter, J., Van Brüssel, H.: Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 13(5), 730–740 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najah Roula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roula, N., Rizk, R., Zaouk, D., Farah, W., Francis, Z. (2020). Nonlinear RISE-Based Control for a Gravity Balanced Exoskeleton: Evaluation of the Design and Control Principle. In: Misyurin, S., Arakelian, V., Avetisyan, A. (eds) Advanced Technologies in Robotics and Intelligent Systems. Mechanisms and Machine Science, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-33491-8_1

Download citation

Publish with us

Policies and ethics